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Abstract. In the framework of the minimal supersymmetric standard model we compute the one-loop
effective action for the electroweak bosons obtained after integrating out the different sleptons, squarks,
neutralinos and charginos, and present the result in terms of the physical sparticle masses. In addition
we study the asymptotic behavior of the two-, three- and four-point Green’s functions with external
electroweak bosons in the limit where the physical sparticle masses are very large in comparison with
the electroweak scale. We find that in this limit all the effects produced by the supersymmetric particles
can either be absorbed in the standard model parameters and gauge bosons wave functions, or else they
are suppressed by inverse powers of the supersymmetric particle masses. This work, therefore, completes
the proof of decoupling of the heavy supersymmetric particles from the standard ones in the electroweak
bosons effective action and in the sense of the Appelquist–Carazzone theorem; we started this proof in a
previous work. From the point of view of effective field theories this work can be seen as a (partial) proof
that the SM can indeed be obtained from the MSSM as the quantum low-energy effective theory of the
latter when the SUSY spectra are much heavier than the electroweak scale.

1 Introduction

In spite of the enormous amount of experimental evidence
in favor of the standard model (SM), most of the physicists
consider it just as a low-energy manifestation of a more
fundamental theory. Among the possible extensions of the
SM one of the most popular is the so-called minimal su-
persymmetric standard model (MSSM) [1,2], which is the
simplest theory that can be built from a supersymmetric
version of the SM after the introduction of a minimal set of
soft breaking terms [3]. Those terms break the supersym-
metry (SUSY) of the original supersymmetric standard
model and give rise to contributions to the Higgs potential
that finally produce the appropriate spontaneous breaking
of the SU(2)L×U(1)Y electroweak gauge symmetry. Con-
sidering the MSSM as an interesting possibility motivated
by many theoretical reasons, it is a quite natural question
to ask: in what sense, if any, can the SM model be consid-
ered as a low-energy effective theory of the MSSM in the
case where the SUSY partners of the standard particles
are very heavy. In fact there are many partial indications
that the SM is the low-energy limit of the MSSM [4–9].
However, most of them are based on numerical estimates
and are obtained after taking some of the mass parame-
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ters appearing in the soft breaking terms numerically very
large.

In this work we would like to address the question of
getting the SM from the MSSM from a more formal field
theoretical point of view; in addition, we will work di-
rectly with the physical sparticle masses instead of using
the soft breaking parameters. In order to do that, we will
pay special attention to two esential points: First we will
define in a very precise way what we understand by a low-
energy effective theory. The definition that we will adopt
here is the one corresponding to the so-called decoupling
or Appelquist–Carazzone theorem [10]. Namely, a theory
with just light fields φ is considered as the low-energy ef-
fective theory of a larger theory with both heavy φ̃ and
light φ fields if the effects of integrating out the heavy
fields φ̃ on the Green’s functions can be reduced to renor-
malizations of the parameters of the effective theory, or
produce extra terms which are supressed by inverse powers
of the heavy φ̃ masses [11]. The second important point to
be taken into account is the precise way in which the large
sparticle mass limit is taken. This is essential since, due to
the divergences appearing in the loop integrals, large mass
limits and momentum integrations do not commute and
even the large mass limit for the various particles may not
commute among themselves. In this work we have chosen
to take the limit where the sparticle masses m̃i are much
larger than the electroweak boson masses and the external
momenta and, at the same time, we will assume that the
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differences among the sparticles masses are much smaller
than the sparticles masses themselves. These conditions
give rise to a precise definition of the large sparticle mass
regime, and make it possible to define, in an unambigu-
ous way, the resulting low-energy theory for the standard
particles. If this low-energy theory corresponds to the SM
according to the Appelquist–Carazzone definition, we will
say that the SUSY particles decouple from the SM. Notice
that the decoupling of the SUSY particles, in case it oc-
curs, is neither immediate nor trivial at all. This is because
the Appelquist–Carazzone theorem does not always apply
[12–14]. For example, it does not apply whenever we have
spontaneous symmetry breaking or chiral fermions [11].
This is just the case of the MSSM. Therefore the decou-
pling of the SUSY particles in the Appelquist–Carazzone
sense must be shown explicitly in this case.

Thus, our program is the following. We will start with
the MSSM sector involving the electroweak bosons for
which we want to study the possible decoupling of the
SUSY particles. Then we compute the Green’s functions
for the electroweak gauge bosons that are obtained by inte-
grating out the sleptons, squarks, neutralinos and charginos
at the one-loop level (the Higgs sector of the MSSM is con-
sidered in [18]). The next step is the analytical study of
the behavior of these Green’s functions in the asymptotic
regime of the large sparticle masses defined above. This
task will be much easier by using the so-called m-theorem
[15] as will be explained below. Finally, by comparison of
the obtained results with the tree level SM Green’s func-
tions for the electroweak bosons, we will be able to show
the decoupling of the considered SUSY particles according
to the Appelquist–Carazzone definition.

The above program was started by the authors in [16],
where the two-point functions for electroweak gauge bo-
sons and the S, T and U observables were considered.
Here we continue that program and consider the three-
and four-point functions for electroweak gauge bosons. We
use the same notations and conventions for the MSSM as
in our previous work. We also refer the reader to that work
for more details and, in particular, for a broad discussion
on the large sparticle mass limit. The present paper is
organized as follows: In Sect. 2 we review the definition
of the low-energy action for the electroweak bosons that
we presented in [16]. The results for the two-point func-
tions are summarized in Sect. 3. The three- and four-point
functions are obtained and discussed in Sects. 4 and 5, re-
spectively. These and our previous results are analyzed to-
gether in order to establish the applicability criterion for
the Appelquist–Carazzone theorem in the case studied.
Finally, in Sect. 6 we report the main conclusions of our
work. In Appendix A we define the one-loop integrals ap-
pearing in our computations by using the standard scalar
and tensor integrals [17] and give the asymptotic forms of
the last ones. Appendix B contains some operators and
functions which are used in this article to present the re-
sults for the three and four functions. Appendix C is de-
voted to a summary of the exact results to one loop for
the three- and four-point sfermion contributions and for
the three-point inos contributions.

2 The low-energy effective action
for the electroweak bosons

In this section we describe our computation of the effec-
tive action for the electroweak bosons. It contains the two-,
three- and four-point Green’s functions and is obtained af-
ter the integration of the sfermions and inos, viz. charginos
and neutralinos of the MSSM [16].

In more generic words, our aim is to compute the ef-
fective action Γeff [φ] for the standard particles φ that is
defined through functional integration of all the sparticles
of the MSSM φ̃. In a brief notation it is defined by

eiΓeff [φ] =
∫

[dφ̃]eiΓMSSM[φ,φ̃], (1)

with

ΓMSSM[φ, φ̃] ≡
∫

dxLMSSM(φ, φ̃); dx ≡ d4x, (2)

and LMSSM is the MSSM Lagrangian. The computation of
the effective action will be performed at the one-loop level
by using dimensional regularization, in an arbitrary Rξ

gauge and will include the integration of all the sfermions
f̃ (squarks q̃ and sleptons l̃), neutralinos χ̃o and charginos
χ̃+. Our program starts, in particular, with the computa-
tion of the electroweak gauge boson effective action Γeff
[V ] (V = A, Z and W±) given by

eiΓeff [V ] =
∫

[df̃ ][df̃∗][dχ̃+][d¯̃χ+]

×[dχ̃o]eiΓMSSM[V,f̃ ,χ̃+,χ̃o], (3)

where

ΓMSSM[V, f̃ , χ̃+, χ̃o] ≡
∫

dxLMSSM(V, f̃ , χ̃+, χ̃o)

=
∫

dxL(0)(V )

+
∫

dxLf̃ (V, f̃) +
∫

dxLχ̃(V, χ̃)

≡ Γ0[V ] + Γf̃ [V, f̃ ] + Γχ̃[V, χ̃], (4)

and L(0), Lf̃ , Lχ̃ are the free Lagrangian and the interac-
tion Lagrangian of gauge bosons with sfermions and inos,
respectively. From now on we will follow closely the def-
initions, notations and conventions introduced in [16]. In
particular, we will use the compact notation:

φ(x) ≡ φx, δ(x − y) ≡ δxy, A(x, y) ≡ Axy,

TrA = tr
∫

dxAxx =
∑

a

∫
dxAaa

xx, (5)
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and

f̃ ≡


t̃1
t̃2
b̃1

b̃2

 if f̃ = q̃; f̃ ≡


ν̃

0
τ̃1

τ̃2

 if f̃ = l̃,

χ̃+ ≡
(

χ̃+
1

χ̃+
2

)
, χ̃o ≡


χ̃o

1

χ̃o
2

χ̃o
3

χ̃o
4

 .

(6)

The actions appearing in (4) can be written as

Γf̃ [V, f̃ ] = 〈f̃+Af̃ f̃〉, (7)

where

Af̃ ≡ A
(0)
f̃

+ A
(1)
f̃

+ A
(2)
f̃

,

〈f̃+A
(i)
f̃

f̃〉 ≡
∑

f̃

∫
dxdyf̃+

x A
(i)
f̃xy

f̃y, i = 0, 1, 2, (8)

and the operators are

A
(0)
f̃xy

≡ (−2 − M̃2
f )xδxy,

A
(1)
f̃xy

≡ −ie
(
∂µAµQ̂f + 2Q̂fAµ∂µ

)
x

δxy

− ig
cW

(
∂µZµĜf + 2ĜfZµ∂µ

)
x

δxy

− ig√
2

(
∂µW+µΣtb

f + 2Σtb
f W+

µ ∂µ
)
x

δxy + h.c.,

A
(2)
f̃xy

≡
(

e2Q̂2
fAµAµ +

2ge

cW
AµZµQ̂f Ĝf +

g2

c2
W

Ĝ2
fZµZµ

+
1
2
g2ΣfW+

µ Wµ− +
eg√

2
yfAµWµ+Σtb

f

+
eg√

2
yfAµWµ−Σbt

f − g2
√

2
yf

s2
W

cW
ZµWµ+Σtb

f

− g2
√

2
yf

s2
W

cW
ZµWµ−Σbt

f

)
x

δxy, (9)

where s2
W = sin2θW, c2

W = cos2θW and yf = 1/3 if f̃ = q̃

or yf = −1 if f̃ = l̃.
Analogously, we have

Γχ̃[V, χ̃] =
1
2
〈¯̃χo(A(0)

0 + A
(1)
0 )χ̃o〉 + 〈¯̃χ+(A(0)

+ + A
(1)
+ )χ̃+〉

+ 〈¯̃χo
A

(1)
0+χ̃+〉 + 〈¯̃χ+

A
(1)
+0χ̃

o〉, (10)

where

〈¯̃χo
A

(i)
0 χ̃o〉 ≡

∫
dxdy ¯̃χo

xA
(i)
0xyχ̃o

y,

〈¯̃χ+
A

(i)
+ χ̃+〉 ≡

∫
dxdy ¯̃χ+

x A
(i)
+xyχ̃+

y , i = 0, 1,

〈¯̃χo
A

(1)
0+χ̃+〉 ≡

∫
dxdy ¯̃χo

xA
(1)
0+xyχ̃+

y ,

〈¯̃χ+
A

(1)
+0χ̃

o〉 ≡
∫

dxdy ¯̃χ+
x A

(1)
+0xyχ̃o

y, (11)

and the operators are

A
(0)
0xy ≡

(
i/∂ − M̃0

)
x

δxy,

A
(0)
+xy ≡

(
i/∂ − M̃+

)
x

δxy,

A
(1)
0xy ≡ g

cw
Zµγµ (O′′

LPL + O′′
RPR)x δxy,

A
(1)
+xy ≡

[
g

cw
Zµγµ (O′

LPL + O′
RPR) − eAµγµ

]
x

δxy,

A
(1)
0+xy ≡ [

gW−
µ γµ (OLPL + ORPR)

]
x

δxy,

A
(1)
+0xy ≡ [

gW+
µ γµ

(
O+

L PL + O+
RPR

)]
x

δxy. (12)

In the above expressions the coupling matrices Q̂f , Ĝf ,
Σtb

f , Σbt
f , Σf , and OL, OR, O′

L, O′
R, O′′

L, O′′
R as well as the

mass matrices M̃f , M̃0 and M̃+ are defined in [16].
The effective action can be written as

eiΓeff [V ] = eiΓo[V ]eiΓ f̃
eff [V ]eiΓ χ̃

eff [V ], (13)

where
eiΓ f̃

eff [V ] =
∫

[df̃ ][df̃∗]eiΓf̃ [V,f̃ ]. (14)

eiΓ χ̃
eff [V ] =

∫
[dχ̃+][d¯̃χ+][dχ̃o]eiΓχ̃[V,χ̃]. (15)

After a Gaussian integration on the complex sfermion
fields we find

Γ f̃
eff [V ] = iTr log Af̃ = iTr log[A(o)

f̃
(1+A

(o)−1
f̃

(A(1)
f̃

+A
(2)
f̃

))]

and by making the standard manipulations we get

Γ f̃
eff [V ] = i

∑∞
k=1

(−1)k+1

k Tr[Gf̃ (A(1)
f̃

+ A
(2)
f̃

)]k, (16)

where the free sfermion propagator matrix Gf̃ ≡ A
(o)−1

f̃
is

given by

Gij

f̃xy
≡
∫

dDq

(2π)D
µ4−D

o e−iq(x−y)(q2 − M̃2
f )−1

ij , (17)

with

(q2 − M̃2
f )−1

= diag

(
1

q2 − m̃2
t1

,
1

q2 − m̃2
t2

,
1

q2 − m̃2
b1

,
1

q2 − m̃2
b2

)
if f̃ = q̃

or

(q2 − M̃2
f )−1

= diag
(

1
q2 − m̃2

ν

,
1
q2 ,

1
q2 − m̃2

τ1

,
1

q2 − m̃2
τ2

)
if f̃ = l̃,

and the sums over the three generations and the Nc squarks
colors are implicit. Finally, if we keep just the terms that
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eiΓ χ̃
eff [V ] =

∫
[dχ̃+][d¯̃χ+][dχ̃o] × ei{ 1

2 〈¯̃χo(A(o)
o +A(1)

o )χ̃o〉+〈¯̃χ+(A(o)
+ +A

(1)
+ )χ̃+〉+〈¯̃χoA

(1)
o+χ̃+〉+〈¯̃χ+A

(1)
+oχ̃o〉}. (19)

contribute to the two-, three- and four-point functions, the
effective action generated from sfermions integration can
be written as,

Γ f̃
eff [V ] = iTr(Gf̃A

(2)
f̃

) − i
2

Tr(Gf̃A
(1)
f̃

)2

− iTr(Gf̃A
(1)
f̃

Gf̃A
(2)
f̃

) +
i
3

Tr(Gf̃A
(1)
f̃

)3,

− i
2

Tr(Gf̃A
(2)
f̃

)2 + iTr(Gf̃A
(1)
f̃

Gf̃A
(1)
f̃

Gf̃A
(2)
f̃

)

− i
4

Tr(Gf̃A
(1)
f̃

)4 + O(V 5), (18)

Clearly, we can identify the first and second terms in (18)
with the one-loop contributions from sfermions to the two-
point functions; the third and fourth terms with the con-
tributions to the three-point functions and the last three
terms are the corresponding contributions to the four-
point functions.

On the other hand the contributions to the electroweak
gauge bosons effective action coming from the neutralinos
and the charginos are given by Eq. 19 (on top of the page).

By performing first a standard Grassmann integration
on the chargino fields we find

eiΓ χ̃
eff [V ] = det(A(o)

+ + A
(1)
+ )

×
∫

[dχ̃o]ei 12 〈¯̃χo[A(o)
o +A(1)

o −2A
(1)
o+(A(o)

+ +A
(1)
+ )−1A

(1)
+o]χ̃o〉.

Next we integrate over the neutralinos which are Majorana
fermion fields and find

eiΓ χ̃
eff [V ] = det(A(o)

+ + A
(1)
+ )

×
[
det(γ0[A(o)

o + A(1)
o − 2A

(1)
o+(A(o)

+ + A
(1)
+ )−1A

(1)
+o])

A

] 1
2
,

so that the effective action can be written as

Γ χ̃
eff [V ] = −iTr log(A(o)

+ + A
(1)
+ )

− i
2

Tr log(γ0[A(o)
o + A(1)

o − 2A
(1)
o+(A(o)

+

+ A
(1)
+ )−1A

(1)
+o])A, (20)

where the index A means that the corresponding operator
must be properly antisymmetrized.

Now, by introducing the chargino propagator k+ ≡
A

(o)−1

+ which is given by the matrix

kij
+xy ≡

∫
dDq

(2π)D

× µ4−D
o e−iq(x−y)(q/ − M̃+)−1

ij , i, j = 1, 2, (21)

and the neutralino propagator ko ≡ A
(o)−1

o which is given
by the matrix

kij
oxy ≡

∫
dDq

(2π)D

× µ4−D
o e−iq(x−y)(q/ − M̃o)−1

ij , i, j = 1, 2, 3, 4, (22)

we can write the total inos contribution to the effective
action as

Γ χ̃
eff [V ] =

i
2

Tr(k+A
(1)
+ )2 +

i
4

Tr(koA
(1)
o )2

+ iTr(koA
(1)
o+k+A

(1)
+o) − i

3
Tr(k+A

(1)
+ )3

− iTr(koA
(1)
o+k+A

(1)
+ k+A

(1)
+o)

− iTr(koA
(1)
o koA

(1)
o+k+A

(1)
+o) − i

6
Tr(koA

(1)
o )3

+
i
4

Tr(k+A
(1)
+ )4 + iTr(koA

(1)
o+(k+A

(1)
+ )

2
k+A

(1)
+o)

+
i
2

Tr(koA
(1)
o+k+A

(1)
+o)

2

+
i
2

Tr(koA
(1)
o+k+A

(1)
+okoγ0A

(1)T
+o γ0k+γ0A

(1)T
o+ γ0)

+ iTr(koA
(1)
o koA

(1)
o+k+A

(1)
+ k+A

(1)
+o)

+ iTr((koA
(1)
o )2koA

(1)
o+k+A

(1)
+o)

+
i
8

Tr(koA
(1)
o )4 + O(V 5). (23)

In the above formula the three first terms correspond with
the one-loop contributions to the two-point functions in
the inos sector; the following four terms with the contribu-
tions to the three-point functions and the last seven terms
are the corresponding contributions to the four-point func-
tions.

Thus the total effective action for the two-, three-, and
four-point Green’s functions is given by

Γeff [V ] = Γo[V ] + Γ f̃
eff [V ] + Γ χ̃

eff [V ], (24)

where Γo[V ] is the effective action at tree level and Γ f̃
eff [V ]

and Γ χ̃
eff [V ] are the effective actions generated from sferm-

ions and inos, respectively, which have been given in (18)
and (23).

The Feynman diagrams corresponding to the different
terms appearing in the above equations (18) and (23) can
be found in Fig. 1.

Finally, the effective action can generically be written
as a function of the n point Green’s functions, ΓV1V2···Vn

µν···ρ ,
as

Γeff [V ] =
∑

n

1
CV1V2···Vn

∫
dx1 · · · dxn (25)

× ΓV1V2···Vn
µν···ρ (x1x2 · · ·xn)V µ

1 (x1)V ν
2 (x2) · · ·V ρ

n (xn),
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V1 V2

~f

~f

V1 V2

~f

V1

V3

V2

~f

~f

~f
V1

V3

V2

~f

~f

V2

V1

V4

V3

~f

~f

~f V2

V1

V4

V3

~f

~f

V2

V1

V4

V3

~f

~f

~f

~f

(a)

V1 V2

~�

~�

V1

V3

V2
~�

~�

~�
V2

V1

V4

V3

~�

~�

~�

~�

(b)

Fig. 1. Generic Feynman diagrams corresponding
to the one-loop contributions to the two, three and
four-point functions. a With sfermions in the loops.
b With charginos and neutralinos in the loops

where CV1V2···Vn
are the appropriate combinatorial fac-

tors. For practical purposes, it is useful to work in the
momentum space where the effective action is given by

Γeff [V ] =
∑

n

1
CV1V2···Vn

∫
dk̃1 · · · dk̃n(2π)4δ(Σn

i=1ki)

× ΓV1V2···Vn
µν···ρ (k1k2 · · · kn)V µ

1 (−k1)

× V ν
2 (−k2) · · ·V ρ

n (−kn), (26)

where dk̃ ≡ d4k/(2π)4 and the momentum-space Green’s
functions ΓV1V2···Vn

µν···ρ (k1k2 · · · kn) are the Fourier transforms
of the ordinary space-time Green’s functions ΓV1V2···Vn

µν···ρ
(x1x2 · · ·xn),

(2π)4δ(Σn
i=1ki)ΓV1V2···Vn

µν···ρ (k1, k2, · · · , kn) ≡∫
dx1dx2 · · · dxne−iΣn

i=1kixiΓV1V2···Vn
µν···ρ (x1, x2, · · · , xn).

Our convention for the Fourier transform of the gauge bo-
sons fields V µ(k) is

V µ(k) =
∫

dxe−ikxV µ(x).

Finally, we recall that in extracting the Green’s functions
from the effective action, the proper symmetrization over
the indices and momenta corresponding to the identical
external fields must be performed.

3 Decoupling in the two-point functions

In this section and in the following we study the asymp-
totic behavior of the above effective action and the corre-
sponding Green’s functions in the regime where the spar-
ticle masses are large. By a large sparticle mass limit we
generically mean m̃2

i � M2
EW, k2, where m̃i denotes any of

the physical sparticle masses, MEW any of the electroweak
masses (MZ , MW, mt, . . .) and k denotes any of the ex-
ternal momenta. As for the analytical computation, when-
ever we refer to the large sparticle mass limit of a given
one-loop Feynman integral, we mean the asymptotic limit
m̃i → ∞ for all sparticle masses that are involved in that
integral. However, we would like to emphasize that this
asymptotic limit is not fully defined unless one specifies
in addition the relative sizes of the involved masses. In
other words, the result may depend, in general, on the
particular way this asymptotic limit is taken. Here we
consider the asymptotic limit m̃2

i,j → ∞, while keeping
|(m̃2

i − m̃2
j )/(m̃2

i + m̃2
j )| � 1 for all i 6= j in each MSSM

sector. That is, we consider the plausible situation where
there is a big gap between the SUSY particles and their
standard partners, but the differences among the SUSY
masses belonging to the same sector are not large. No-
tice that the other possibility where the sparticle masses
are large as compared to the electroweak scale but their
squared mass differences are of the same order as their
sums, namely |m̃2

i − m̃2
j | ∼ |m̃2

i + m̃2
j | for all i 6= j in each

MSSM sector, is not studied in this paper. It corresponds
to |(m̃2

i −m̃2
j )/(m̃2

i +m̃2
j )| ∼ O(1) and therefore, in contrast
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with the previous case, this ratio cannot be considered as
a good expansion parameter. We have explained in [16]
how to deal with these two different expansions and how
they can be interpreted in terms of the MSSM parame-
ters. Of course, the demonstration of decoupling for the
second possibility should be considered separately since
it requires a different asymptotic expansion of the loop
integrals than the ones presented in this work.

Let us first concentrate on the two-point functions.
Details of this analysis can be found in [16]. We just sum-
marize here the main results.

By working in the momentum space and by follow-
ing the standard techniques it is possible to compute the
two-point functions coming from the integration of the
sfermions and the inos according to the discussion intro-
duced in the previous section. The corresponding part of
the effective action can be written as

Γeff [V ][2] =
1

CV1V2

∫
dp̃dk̃δ(p + k)

× (2π)4ΓV1V2
µν (k)V µ

1 (−p)V ν
2 (−k), (27)

where CV1V2 = n and n denotes the number of external
gauge bosons that are identical.

The exact results for each contribution to the two-
point Green’s functions in momentum space and in a Rξ

covariant gauge, ΓAA
µν (k), ΓZZ

µν (k), ΓAZ
µν (k) and ΓWW

µν (k),
can be found in [16].

As was explained in the introduction and was men-
tioned at the begining of this section, we are interested in
the asymptotic behavior of the Green’s functions for very
heavy SUSY masses. Thus we need to compute not just the
exact results to one loop of the Green’s functions but their
asymptotic expressions valid in that limit. In order to get
these we have analyzed the integrals by means of the so-
called m-theorem [15]. This theorem provides a powerful
technique to study the asymptotic behavior of Feynman
integrals in the limit where some of the masses are large.
Notice that this is non-trivial since some of these integrals
are divergent, in which case the interchange of the integral
with the large mass limit is not allowed. Thus, one should
first compute the integrals with some regularization pro-
cedure as, for instance, dimensional regularization, and
at the end take the large mass limit. Instead of this di-
rect way it is also possible to proceed as follows: First,
one rearranges the integrand through algebraic manipu-
lations to separate the Feynman integral into a divergent
part, which can be evaluated exactly using the standard
techniques of dimensional regularization, and a convergent
part that satisfies the requirements demanded by the m-
theorem and therefore, goes to zero in the infinite mass
limit. By means of this procedure the correct asymptotic
behavior of the integrals is guaranteed. This is the method
we will follow in this work. Some examples of the computa-
tion of the Feynman integrals by means of the m-theorem
as well as details of this theorem are given in [16]. The
results for the one-loop integrals in the large mass limit
that appear in the two-point functions are also presented
in that paper.

By following the above described method we have ob-
tained the asymptotic behavior of the two-point functions
in the large sparticle mass limit, which for the sfermion
and inos sectors read, respectively, as follows:

m̃2
fi

� M2
EW , k2,

|m̃2
fi

− m̃2
fj

| � |m̃2
fi

+ m̃2
fj

| ∀i, j, (28)

and

M̃2
i � M2

EW , k2,

|M̃2
i − M̃2

j | � |M̃2
i + M̃2

j | ∀i, j, (29)

where m̃fi denotes the mass of the sfermion f̃i, M̃i the
mass of the ino i, MEW is any of the electroweak masses
and k is any of the external momenta. The results of the
two-point functions ΓV1V2

µν (k) to one loop are given by

ΓV1V2
µν = Γ0

V1V2
µν + ∆ΓV1V2

µν , (30)

where the tree level functions Γ0
V1V2
µν in a Rξ covariant

gauge are

Γ0
V V
µν (k) = (M2

V − k2)gµν

+
(

1 − 1
ξV

)
kµkν (V = Z, W ),

Γ0
AA
µν = −k2gµν +

(
1 − 1

ξA

)
kµkν ,

Γ0
V1V2
µν = 0 if V1 6= V2, (31)

and the contributions from sfermions and inos, ∆ΓV1V2
µν ,

can be written as

∆ΓV1V2
µν (k) = ΣV1V2(k)gµν + RV1V2(k)kµkν . (32)

We have shown in [16] that the asymptotic results are
of the generic form

ΣV1V2(k) = ΣV1V2
(0) + ΣV1V2

(1) k2

+ O

(
k2

Σm̃2 ,
4m̃2

Σm̃2

)
,

RV1V2(k) = RV1V2
(0) + O

(
k2

Σm̃2 ,
4m̃2

Σm̃2

)
, (33)

where ΣV1V2
(1) and RV1V2

(0) contain the divergent contribu-
tions, namely the O(1/ε) terms in dimensional regular-
ization, and are functions of the large SUSY masses but
are k independent. Furthermore, we find RV1V2

(0) = −ΣV1V2
(1)

in this asymptotic regime. On the other hand, the ΣV1V2
(0)

functions turn out to be finite and k independent, and
they vanish in the asymptotic limit of infinite sparticle
masses. Here and in the following the terms denoted by
O
(
k2/(Σm̃2), (4m̃2)/(Σm̃2)

)
are suppressed by inverse

powers of the large SUSY masses and vanish in the asymp-
totic regime. The large mass parameter of the asymptotic
expansion in the two-point functions is always taken to
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be the sum of the various squared masses involved in the
corresponding loop diagram which we here generically de-
note by Σm̃2. On the other hand, 4m̃2 represents the
various corresponding squared mass differences which in
our asymptotic limit are always smaller than the corre-
sponding sum.

These results can alternatively be expressed through
the transverse and longitudinal parts of the two-point func-
tions, ΣV1V2

T and ΣV1V2
L , which are defined by

ΓV1V2
µν (k) = Γ0

V1V2
µν (k)

+ ΣV1V2
T (k)

(
gµν − kµkν

k2

)
+ ΣV1V2

L (k)
kµkν

k2 . (34)

According to this definition, the asymptotic results whose
explicit expressions are given in [16] can be written, in a
generic form, as

ΣV1V2
T (k) = ΣV1V2

(0) + ΣV1V2
(1) k2 + O

(
k2

Σm̃2 ,
4m̃2

Σm̃2

)
,

ΣV1V2
L (k) = ΣV1V2

(0) + O

(
k2

Σm̃2 ,
4m̃2

Σm̃2

)
. (35)

Notice that (ΣV1V2
L − ΣV1V2

T ) ∝ k2. This result together
with the explicit form of the ΣV1V2

(0) and ΣV1V2
(1) functions

demonstrate that the decoupling indeed occurs in the two-
point functions.

In order to illustrate the above result with one partic-
ular example, we choose to present here the explicit ex-
pressions for the ΣZZ contributions. The transverse con-
tributions are [16]

ΣZZ
T (k)q̃ = Nc

e2

16π2

1
s2
Wc2

W

×
∑

q̃

{
1
2
[
c2
t s

2
t h(m̃2

t1 , m̃
2
t2) + c2

bs
2
bh(m̃2

b1 , m̃
2
b2)
]

− 1
3
k2

[(
c2
t

2
− 2sW

2

3

)2(
∆ε − log

m̃2
t1

µ2
o

)

+
(

s2
t

2
− 2sW

2

3

)2(
∆ε − log

m̃2
t2

µ2
o

)
+
(

−c2
b

2
+

sW
2

3

)2
(

∆ε − log
m̃2

b1

µ2
o

)

+
(

−s2
b

2
+

s2
W

3

)2
(

∆ε − log
m̃2

b2

µ2
o

)

+
1
2
s2

t c
2
t

(
∆ε − log

m̃2
t1 + m̃2

t2

2µ2
o

)
+

1
2
s2

bc
2
b

(
∆ε − log

m̃2
b1

+ m̃2
b2

2µ2
o

)]}
, (36)

ΣZZ
T (k)l̃ = − e2

16π2

1

s2
WcW

2

×
∑

l̃

{
−1

2
c2
τs2

τh(m̃2
τ1

, m̃2
τ2

)

+
1
3
k2
[

1
4

(
∆ε − log

m̃2
ν

µ2
o

)
+
(−c2

τ

2
+ s2

W

)2(
∆ε − log

m̃2
τ1

µ2
o

)
+
(

−s2
τ

2
+ sW

2
)2(

∆ε − log
m̃2

τ2

µ2
o

)
+

1
2
s2

τ c2
τ

(
∆ε − log

m̃2
τ1

+ m̃2
τ2

2µ2
o

)]}
, (37)

ΣZZ
T (k)χ̃ = − e2

16π2

1
s2
Wc2

W

×
{

−1
2

(M̃o
3 − M̃o

4 )
2
(

∆ε − log
M̃o

3
2 + M̃o

4
2

2µ2
o

)

+
1
3
k2

[
4
(
s2
W − 1

)2(
∆ε − log

M̃+
1

2

µ2
o

)

+ 4
(

s2
W − 1

2

)2
(

∆ε − log
M̃+

2
2

µ2
o

)

+

(
∆ε − log

M̃o
3

2 + M̃o
4

2

2µ2
o

)]}
. (38)

The results for the corresponding longitudinal parts can,
generically, be written as

ΣZZ
L (k) =[

Term in ΣZZ
T (k) that is k independent

] ≡ ΣZZ
(0) . (39)

In the above equations cf = cosθf , sf = sinθf , with θf be-
ing the mixing angle in the f sector, and the sum in q̃ and
l̃ running over the three squark and slepton generations,
respectively. Besides,

∆ε =
2
ε

− γε + log(4π) , ε = 4 − D; (40)

µo is the usual mass scale appearing in dimensional regu-
larization, and the function h(m2

1, m
2
2) is given by

h(m2
1, m

2
2) ≡ m2

1 log
2m2

1

m2
1 + m2

2

+ m2
2 log

2m2
2

m2
1 + m2

2
, (41)

which behaves as

h(m2
1, m

2
2) →

m2
1 − m2

2

2

[
(m2

1 − m2
2)

(m2
1 + m2

2)
+ O

(
m2

1 − m2
2

m2
1 + m2

2

)2
]

(42)

in the asymptotic limit. The explicit expressions for the
other two-point functions, ΓAA, ΓAZ , and ΓWW can be
found in [16].
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As can be seen from our total results [16], all the
non-vanishing contributions to the two-point functions in
the asymptotic region are contained in ΣV1V2

(1) and RV1V2
(0) ;

we have RV1V2
(0) = −ΣV1V2

(1) . Therefore, they can be ab-
sorbed into a redefinition of the SM relevant parameters,
MW, MZ and e and the gauge bosons wave functions. In
consequence, the decoupling of squarks, sleptons, charginos
and neutralinos in the two-point functions do indeed oc-
cur.

4 The three-point functions

In this section we present the three-point functions for
the electroweak gauge bosons to one loop and analyze the
large mass limit of the SUSY particles.

In order to get the explicit expressions for these func-
tions one must work out the corresponding functional traces
in the formulae (18) and (23). For this purpose one must
substitute all the operators and propagators in these for-
mulae, and compute all the appearing Dirac traces. The
functional traces also involve performing the sum in the
corresponding matrix indices, the sum over the various
types of sfermions and the sum in color indices in the case
of squarks. We would like to mention that, in this paper,
we have chosen to work in the momentum space, which
turns out to considerably simplify the calculation of the
functional traces.

By following the same procedure as in Sect. 3 we have
obtained the result for the effective action of the three-
point functions coming from the integration of sfermions
and inos. Generically, the corresponding part of the effec-
tive action can be written as

Γeff [V ][3] =
1

CV1V2V3

∫
dp̃dk̃dr̃δ(p + k + r)

× (2π)4ΓV1V2V3
µνσ V µ

1 (−p)V ν
2 (−k)V σ

3 (−r), (43)

where CV1V2V3 = n! and n is the number of external gauge
bosons that are identical.

4.1 Sfermions contributions

For simplicity, we show here the results in a general and
compact form and leave the details for the appendices.
Once the appropiate traces have been computed, the cor-
responding effective action for the three-point functions
coming from the sfermions integration can be expressed
as

Γ f̃
eff [V ][3] = −π2

∫
dp̃dk̃dr̃δ(p + k + r)

×
∑

f̃

(∑
a,b

(Ô1µ)ab(Ô2νσ)baT ab
µ (p, m̃fa

, m̃fb
)gνσ

− 1
3

∑
a,b,c

(Ô1µ)ab(Ô1ν)bc(Ô1σ)ca

× T abc
µνσ(p, k, m̃fa

, m̃fb
, m̃fc

)
)

, (44)

where, similarly to the two-point functions, the sum in f̃
runs over the three generations and over the Nc colors in
the case of squarks, the indices a, b and c run from one
to four corresponding to the four entries of the sfermions
column matrix f̃ . T ab

µ and T abc
µνσ are the one-loop integrals

that are defined as functions of the standard integrals in
Appendix A, and Ô1µ and Ô2µν are the operators collected
in Appendix B. It is important to emphasize that this
formula is exact to one loop.

By substituting the definition of the operators involved
in the above equation, we have obtained all the contribu-
tions to the three-point functions to one loop. In partic-
ular, the exact results for AW+W− and ZW+W− are
given in Appendix C.

Furthermore, as we are interested in the large mass
limit of the SUSY particles, we need the asymptotic ex-
pressions for the integrals appearing in the formula (44),
which we have obtained by means of the m-theorem. The
results of the these integrals in that limit can be easily
read from (A.3) and (A.4), respectively, and by using the
corresponding asymptotic expressions for the scalar and
tensor integrals that have been presented in Appendix A.
By substituting these asymptotic results into (44), we fi-
nally get

Γ f̃
eff [V ][3] =

π2

9

∫
dp̃dk̃dr̃δ(p + k + r) (45)

×
∑

f̃

∑
a,b,c

(Ô1µ)ab(Ô1ν)bc(Ô1σ)ca

×
(

∆ε − log
m̃2

fa + m̃2
fb + m̃2

fc

3µ2
o

)
 Lµνσ

}
,

where  Lµνσ denotes the tensor appearing in the tree level
vertex defined by

 Lµνσ ≡ [(k − p)σgµν + (r − k)µgνσ + (p − r)νgµσ] . (46)

Therefore, the asymptotic result in (45) is proportional
to the tree level tensor  Lµνσ. Thus, we can already con-
clude at this point that the sfermions decouple in the
three-point functions since this correction being propor-
tional to  Lµνσ can be absorbed into redefinitions of the
SM parameters and the external gauge bosons wave func-
tions. Notice that the two kind of one-loop Feynman in-
tegrals that appear in the three-point functions, T ab

µ and
T abc

µνσ, generically involve two and three different sparti-
cle masses, respectively, which in our limit are consid-
ered to be large. However, in order to implement the large
SUSY mass limit, one must choose a proper combination
of masses such that there is just one large mass parameter
while the others are kept small. Our choice for the large
mass parameter is always the sum of the various squared
SUSY masses involved in the loop integral. The rest of the
mass parameters can be expressed in terms of the sparticle
squared mass differences which in our approximation are
small as compared to their sum as is shown in (28). The
result in (45) has corrections, not explicitly shown, which
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are suppressed by inverse powers of these large SUSY mass
sums, and therefore they vanish in our asymptotic limit.
For completeness, we here also present the explicit contri-
butions to the three-point Green’s functions with specific
external gauge bosons, ΓV1V2V3

µνσ . Our results can be pre-
sented in the form

ΓV1V2V3
µνσ = Γ0

V1V2V3
µνσ + ∆ΓV1V2V3

µνσ , (47)

where the momenta assignments are V µ
1 (−p), V ν

2 (−k) and
V σ

3 (−r) and the tree level contributions are

Γ0
AW+W −
µνσ = e Lµνσ, Γ0

ZW+W −
µνσ = gcW  Lµνσ. (48)

In order to get the sfermion contributions, one must
substitute all the operators that appear in (45), perform
the corresponding sums and after a rather lengthy calcu-
lation, the following results are obtained:

∆ΓAW+W −
µνσ q̃ = − eg2

16π2

Nc

9
 Lµνσ

×
∑

q̃

{
3
2
∆ε + f1(m̃2

t1 , m̃
2
t2 , m̃

2
b1 , m̃

2
b2)
}

+ F1µνσ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
, (49)

∆ΓZW+W −
µνσ q̃ = − g3

16π2

Nc

6cW
 Lµνσ

×
∑

q̃

{
cW

2∆ε + f2(m̃2
t1 , m̃

2
t2 , m̃

2
b1 , m̃

2
b2)
}

+ F2µνσ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
, (50)

where, generically, p denotes any of the external momenta,
4m̃2 denotes the various squared mass differences and
Σm̃2 denotes the corresponding large mass parameter
which in our case is always a sum of squared SUSY masses.
The functions Fiµνσ(i = 1, 2) are finite and they go to
zero in the limit of m̃i,j → ∞(∀i, j) with |m̃2

i − m̃2
j | �

|m̃2
i +m̃2

j |. The functions f1,2(m̃2
t1 , m̃

2
t2 , m̃

2
b1

, m̃2
b2

) are given
explicitly in Appendix B. These functions are also finite
but different from zero in the large mass limit, and there-
fore they contain all the potentially non-decoupling effects
of the three-point functions. More specifically, these effects
are given by the logarithmic dependence on the large mass
parameter of these two functions. Generically, these can
be written as

f1,2(m̃2
t1 , m̃

2
t2 , m̃

2
b1 , m̃

2
b2) = O

(
log

Σm̃2

µ2
o

)
+ O

(4m̃2

Σm̃2

)
.

(51)
As we have mentioned before, the corrections ∆Γ are pro-
portional to the tree level vertex  Lµνσ, and therefore the
potentially non-decoupling effects in the three-point func-
tions can be absorbed into redefinitions of the coupling
constants and wave functions renormalization. Therefore,
this is an explicit proof of decoupling of squarks in the
ΓAW+W −

µνσ and ΓZW+W −
µνσ Green’s functions.

We would like to point out that the other three-point
Green’s functions are exactly zero in our limit, as was ex-
pected. As a check of the previous functional computation
we have also calculated all these three-point functions by
diagramatic methods and we obtained the same results.

Similar results are obtained for the sleptons sector
doing the corresponding replacements: q̃ → l̃, Nc → 1,
m̃t1 → m̃ν , m̃b1 → m̃τ1 , m̃b2 → m̃τ2 , ct → 1, st → 0,
cb → cτ , sb → sτ and yf = 1/3 → yf = −1.

4.2 Inos contributions

To compute the inos contributions to the three-point func-
tions, one must work out the functional traces given in
(23). This leads to an expression containing several com-
binations of momenta, operators and Dirac traces corre-
sponding to specific external gauge bosons V1V2V3 that we
give explicitly in Appendix B.

The result for the effective action coming from the in-
tegration of inos in the three-point functions can be ex-
pressed in a compact form as

Γ χ̃
eff [V ][3] = −i

∫
dp̃dk̃dr̃(2π)4δ(p + k + r)

×
∫

dq̂

1
3

2∑
i,j,k=1

F ijk(M̃+
i , M̃+

j , M̃+
k )

×
{

qα
1 qβ

2 qγ
3 (G · O)+++

123 + qα
1 M̃+

j M̃+
k (G · O)+++

1

+ qα
2 M̃+

i M̃+
k (G · O)+++

2 + qα
3 M̃+

i M̃+
j (G · O)+++

3

}
+

4∑
i=1

2∑
j,k=1

F ijk(M̃o
i , M̃+

j , M̃+
k )
{

qα
1 qβ

2 qγ
3 (G · O)o++

123

+qα
1 M̃+

j M̃+
k (G · O)o++

1 + qα
2 M̃o

i M̃+
k (G · O)o++

2

+ qα
3 M̃o

i M̃+
j (G · O)o++

3

}
+

4∑
i,j=1

2∑
k=1

F ijk(M̃o
i , M̃o

j , M̃+
k )
{

qα
1 qβ

2 qγ
3 (G · O)oo+

123

+qα
1 M̃o

j M̃+
k (G · O)oo+

1 + qα
2 M̃o

i M̃+
k (G · O)oo+

2

+ qα
3 M̃o

i M̃o
j (G · O)oo+

3

}
+

1
6

4∑
i,j,k=1

F ijk(M̃o
i , M̃o

j , M̃o
k )
{

qα
1 qβ

2 qγ
3 (G · O)ooo

123

+qα
1 M̃o

j M̃o
k (G · O)ooo

1 + qα
2 M̃o

i M̃o
k (G · O)ooo

2

+ qα
3 M̃o

i M̃o
j (G · O)ooo

3

} ]
, (52)

where (G · O) denotes the various products of traces and
operators that are collected in Appendix B. The super-
scripts in (G · O) correspond with the type of sparticles
appearing in the loop or, equivalently, in the internal Feyn-
man’s propagators, and the subscripts denote the corre-
sponding momenta to be contracted with the results of
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the traces in each case. For example, in (G · O)+++
123 , the

superscripts +++ denote the three charginos in the loop
and the subscripts 123 mean that the traces must be con-
tracted with the q1, q2 and q3 momenta. The indices i, j, k
in the above formula vary as i, j, k = 1, 2 if they refer to
charginos and as i, j, k = 1, . . . , 4 if they refer to neutrali-
nos, and the generic function F ijk(M̃i, M̃j , M̃k) is given
by

F ijk(M̃i, M̃j , M̃k) =
1[

q2
1 − M̃2

i

] [
q2

2 − M̃2
j

] [
q3

2 − M̃2
k

] ,
where

q1 ≡ q, q2 ≡ q + p, q3 ≡ q + p + k. (53)

As we have explained above, the next step is to com-
pute each Dirac trace appearing in the expression (52),
substitute the operators, perform the corresponding traces
and finally to extract the various three-point functions
with specific external legs which we do not present en-
tirely here for brevity. We have computed each contribu-
tion to these functions and have checked that the results
for ∆ΓAAA, ∆ΓAAZ , ∆ΓAZZ and ∆ΓZZZ are finite as was
expected.

The exact results to one loop for the AW+W− and
ZW+W− three-point functions are collected in Appendix
C.

In order to get the assymptotic limit of the Green’s
functions in (52), (C.7) and (C.8), we use the results of the
one-loop integrals in the large mass limit that are collected
in Appendix A and the values for the coupling matrices
OL,R, O′

L,R and O′′
L,R in the limit of large neutralino and

chargino masses that can be found in [16]. By substituting
all these results into (52) we find the inos contributions to
the three-point part of the effective action which can be
written as

Γ χ̃
eff [V ][3] = −4

3
π2
∫

dp̃dk̃dr̃δ(p + k + r)

×
∑
i,j,k

{
1
3

(
Ô1 + Ô2 + Ô4 + Ô6 + Ô8

)µνσ

ijk

+
1
6
Ô12µνσ

ijk +
(
Ô16 + Ô18

)µνσ

ijk
+ Ô22µνσ

ijk

}
×
(

∆ε − log
M̃2

i + M̃2
j + M̃2

k

3µ2
o

)
 Lµνσ, (54)

where  Lµνσ represents the tree level tensor defined in (46)
and the operators Ôµνσ

ijk can be found in Appendix B. No-
tice that the indices ijk vary in accordance with the inos
particles appearing in the loops, i.e, i, j, k = 1, 2 if they
refer to charginos and i, j, k = 1, · · · , 4 if they refer to
neutralinos.

The fact that this result is proportional again to the
tree level tensor  Lµνσ enables us to conclude that the inos
also decouple in the three-point functions. For complete-
ness we have worked out, in detail, the explicit expressions

for the three-point functions with specific external gauge
bosons that are different from zero in our limit. By using
the same notation as in Sect. 4.1 we have obtained,

∆ΓAW+W −
µνσ χ̃ = − eg2

16π2

4
3

 Lµνσ

×
{

3
2
∆ε + f3(M̃+

1 , M̃+
2 , M̃0

1 , M̃0
2 , M̃0

3 , M̃0
4 )
}

+F3µνσ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
, (55)

∆ΓZW+W −
µνσ χ̃ = − g3

16π2

4
3cW

 Lµνσ

×
{

3
2
c2
W∆ε + f4(M̃+

1 , M̃+
2 , M̃0

1 , M̃0
2 , M̃0

3 , M̃0
4 )
}

+F4µνσ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
, (56)

where the functions Fiµνσ(i = 3, 4) are finite and we have
proved explicitly that they go to zero in our asymptotic
limit. On the other hand, the functions fi(M̃+

1 , M̃+
2 , M̃0

1 ,

M̃0
2 , M̃0

3 , M̃0
4 )(i = 3, 4) are finite and different from zero

in the large mass limit, and therefore they contain all the
potentially non-decoupling effects of the three-point func-
tions. Their explicit expressions can be found in Appendix
B. However, as we have mentioned above, the corrections
∆Γ given in (55) and (56), are also proportional to the tree
level tensor  Lµνσ and therefore, the mentioned potentially
non-decoupling effects can be absorbed into redefenitions
of the SM parameters and the gauge bosons wave func-
tions. The results in (55) and (56) demostrate explicitly,
therefore, the decoupling of the inos in the ΓAW+W −

and
ΓZW+W −

functions.
In addition, we have checked that after the proper sym-

metrization over the identical external fields, the ∆ΓAAA,
∆ΓAAZ , ∆ΓAZZ and ∆ΓZZZ contributions are exactly
zero in our limit as was expected since there are no cor-
responding tree level vertices. As a check of the previous
functional computation we have also calculated all these
three-point functions by diagrammatic methods and we
obtained the same results.

5 The four-point functions and higher

In this section we compute the four-point Green’s func-
tions with external gauge bosons, A, Z, W+, W−, at one-
loop level. At the end of this section we also discuss the
case of higher-point functions, which completes our anal-
ysis of decoupling of the SUSY particles.

Let us begin by writing the expression of the corre-
sponding part of the effective action as a function of the
four-point functions ΓV1V2V3V4

µνσλ ,

Γeff [V ][4] =
1

CV1V2V3V4

(57)

×
∫

dp̃dk̃dr̃dt̃δ(p + k + r + t)(2π)4

× ΓV1V2V3V4
µνσλ V µ

1 (−p)V ν
2 (−k)V σ

3 (−r)V λ
4 (−t),
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where CV1V2V3V4 is the appropriate combinatorial factor
for the number of identical external gauge bosons.

By working in the momentum space and by following
the same techniques described in the previous sections one
computes the four-point functions coming from the inte-
grations of sfermions and inos. Clearly, this computation
involves working out again the corresponding functional
traces given in (18) and (23).

5.1 Sfermions contributions

The resulting effective action for four-point functions that
are generated from sfermions integration can be summa-
rized in the following expression:

Γ f̃
eff [V ][4] = π2

∫
dp̃dk̃dr̃dt̃δ(p + k + r + t)

×
∑

f̃

1
2

∑
a,b

(Ô2µν)ab(Ô2σλ)bagµνgσλ

× Jab
p+k(p + k, m̃fa

, m̃fb
)

−
∑
a,b,c

(Ô1µ)ab(Ô1ν)bc(Ô2σλ)cagσλ

× Jabc
µν (p, k, m̃fa

, m̃fb
, m̃fc

)

+
1
4

∑
a,b,c,d

(Ô1µ)ab(Ô1ν)bc(Ô1σ)cd(Ô1λ)da

× Jabcd
µνσλ(p, k, r, m̃fa

, m̃fb
, m̃fc

)

 , (58)

where the indices a, b, c and d run from one to four corre-
sponding to the four entries of the sfermion matrix in (6)
and the integrals and operators appearing in this formula
are the ones given in Appendix A and B, respectively.

From this formula we have obtained the sfermion con-
tributions to the four-point functions, ΓV1V2V3V4

µνσλ . In the
case of the squarks we have presented the exact results for
the ∆ΓAAW+W −

µνσλ q̃ , ∆ΓZZW+W −
µνσλ q̃ , ∆ΓAZW+W −

µνσλ q̃ and
∆ΓW+W −W+W −

µνσλ q̃ in Appendix C. We have checked explic-
itly in addition that the other four-point functions not
shown in this Appendix are finite as corresponds to the
Green’s functions that do not have tree level contributions.

In order to get the asymptotic expressions for the effec-
tive action given in (58), one proceeds as in the previous
sections. Notice that for the sfermions contributions to the
four-point part of the effective action it is not possible to
write, directly, an expression equivalent to the one given
in (45). In the first step after substituting just the asymp-
totic results of the integrals in (58), one does not obtain
yet a result proportional to the tree level vertex for the
effective action, and one could think that it may be some
non-decoupling effect in the Appelquist–Carazzone sense.
However, this is not the case, and in order to conclude
anything about the decoupling of sfermions in the four-
point functions one needs to go a step further and to com-
pute the different contributions to the four-point Green’s

functions, which involve at the same time performing the
sums in the corresponding matrix indices and over the
various types of sfermions. Finally, after performing these
sums one gets the results for the sfermions contributions
to the four-point functions that indeed show decoupling
since they turn out to be proportional to the correspond-
ing tree level contribution.

Analogously to the previous section, we write our re-
sults as

ΓV1V2V3V4
µνσλ = Γ0

V1V2V3V4
µνσλ + ∆ΓV1V2V3V4

µνσλ , (59)

where the momenta assignments are V µ
1 (−p), V ν

2 (−k),
V σ

3 (−r) and V λ
4 (−t), and the different contributions to

the effective action at tree level are defined by

ΓAAW+W −
0µνσλ = −e2ßµνσλ,

ΓAZW+W −
0µνσλ = −g2sWcWßµνσλ,

ΓZZW+W −
0µνσλ = −g2c2

Wßµνσλ,

ΓW+W −W+W −
0µνσλ = g2ßµσνλ, (60)

with
ßµνσλ ≡ [2gµνgσλ − gµσgνλ − gµλgνσ] . (61)

The results for the squark contributions to the four-point
functions that are different from zero are the following:

∆ΓAAW+W −
µνσλ q̃ = −Nc

6
e2g2

16π2

×
∑

q̃

{
ßµνσλ∆ε + gµνgσλg1(m̃2

t1 , m̃
2
t2 , m̃

2
b1 , m̃

2
b2)

+ (gµσgνλ + gµλgνσ)g2(m̃2
t1 , m̃

2
t2 , m̃

2
b1 , m̃

2
b2)
}

= −Nc

6
e2g2

16π2 ßµνσλ

∑
q̃

{
∆ε − log

M̂2

µ2
o

}

+G1µνσλ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
, (62)

∆ΓAZW+W −
µνσλ q̃ = −Nc

6
eg3

16π2

∑
q̃

{cWßµνσλ∆ε

+
1

cW
gµνgσλg3(m̃2

t1 , m̃
2
t2 , m̃

2
b1 , m̃

2
b2)

+
1

cW
(gµσgνλ + gµλgνσ)g4(m̃2

t1 , m̃
2
t2 , m̃

2
b1 , m̃

2
b2)
}

= −Nc

6
eg3

16π2 cWßµνσλ

∑
q̃

{
∆ε − log

M̂2

µ2
o

}

+G2µνσλ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
, (63)

∆ΓZZW+W −
µνσλ q̃ = −Nc

6
g4

16π2

∑
q̃

{
c2
Wßµνσλ∆ε

+
1

c2
W

gµνgσλg5(m̃2
t1 , m̃

2
t2 , m̃

2
b1 , m̃

2
b2)

+
1

c2
W

(gµσgνλ + gµλgνσ)g6(m̃2
t1 , m̃

2
t2 , m̃

2
b1 , m̃

2
b2)
}
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= −Nc

6
g4

16π2 c2
Wßµνσλ

∑
q̃

{
∆ε − log

M̂2

µ2
o

}

+G3µνσλ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
, (64)

∆ΓW+W −W+W −
µνσλ q̃ = −Nc

3
g4

16π2

×
∑

q̃

{
ßµνσλ∆ε + gµνgσλg7(m̃2

t1 , m̃
2
t2 , m̃

2
b1 , m̃

2
b2)

+ (gµσgνλ + gµλgνσ)g8(m̃2
t1 , m̃

2
t2 , m̃

2
b1 , m̃

2
b2)
}

=
Nc

6
g4

16π2 ßµσνλ

×
∑

q̃

{
∆ε − log

M̂2

µ2
o

}

+G4µνσλ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
. (65)

The functions Gkµνσλ (k = 1, . . . , 4) and gk(m̃2
t1 , m̃

2
t2 ,

m̃2
b1

, m̃2
b2

)(k = 1, . . . 8) are both finite, but the first ones
vanish in our asymptotic limit, whereas the second ones
are different from zero in this limit. Therefore, the lat-
ter contain all the potentially non-decoupling effects of
the four-point functions. The explicit formulae of the gk

functions (k = 1, . . . 8) are collected in Appendix B. As
a check of the previous functional computation we have
also calculated all these four-point functions by diagra-
matic methods and we have got the same results.

Notice that if one takes the sum of the corresponding
SUSY squared masses involved as the large parameter in
the asymptotic expansion, Σm̃2, one finds that the dom-
inant contributions to these gk functions are logarithmic.
Generically, we can write

gk(m̃2
t1 , m̃

2
t2 , m̃

2
b1 , m̃

2
b2) = O

(
log

Σm̃2

µ2
o

)
+ O

(4m̃2

Σm̃2

)
,

(66)
where 4m̃2 denotes the various squared mass differences
and, as in the previous cases, all the contributions of the
type O

(
(4m̃2)/(Σm̃2)

)
vanish in our asymptotic limit.

Notice also that in the previous expressions of the four-
point functions that are given in terms of these gk func-
tions, the decoupling is not manifest yet since the Lorentz
tensorial structure is apparently not proportional to the
tree level one. However, after rewriting these results in
terms of the proper variable which in this case is given by

M̂2 ≡ 1
4

(m̃2
t1 + m̃2

t2 + m̃2
b1 + m̃2

b2),

one finds out that the one-loop corrections to the four-
point functions, ∆Γ , in the asymptotic limit of large M̂2

are indeed proportional to the tree level contribution. This
can be seen in the last lines of (62) to (65), respectively.
Therefore, the potentially non-decoupling effects in the
four-point functions can also be absorbed into redefini-
tions of the coupling constants and wave functions.

Similar expressions are obtained for the sleptons sector
doing the corresponding replacements mentioned at the
end of Sect. 4.1.

In summary, the results in this subsection explicitly
show the decoupling of squarks and sleptons in the four-
point functions.

5.2 Inos contributions

Here we consider the effective action for four-point func-
tions generated from the integration of charginos and neu-
tralinos, which results after computing the corresponding
last functional traces given in (23). By inserting the oper-
ators and propagators of (12), (21) and (22) into (23) and
after a lengthy calculation, that we do not present here
for brevity, the inos contributions to the four-point part
of the effective action can be summarized as follows:

Γ χ̃
eff [V ][4] = i

∫
dp̃dk̃dr̃dt̃(2π)4δ(p + k + r + t)

×
∫

dq̂

1
4

2∑
i,j,k,l=1

Gijkl(M̃+
i , M̃+

j , M̃+
k , M̃+

l )

×
{

qα
1 qβ

2 qγ
3 qρ

4(G · O)++++
1234

+ qα
1 qβ

2 M̃+
k M̃+

l (G · O)++++
12

+ qα
1 qγ

3 M̃+
j M̃+

l (G · O)++++
13

+ qα
1 qρ

4M̃+
j M̃+

k (G · O)++++
14

+ qβ
2 qγ

3 M̃+
l M̃+

i (G · O)++++
23

+ qβ
2 qρ

4M̃+
k M̃+

i (G · O)++++
24

+ qγ
3 qρ

4M̃+
i M̃+

j (G · O)++++
34

+M̃+
i M̃+

j M̃+
k M̃+

l (G · O)++++
}

+
4∑

i=1

2∑
j,k,l=1

Gijkl(M̃o
i , M̃+

j , M̃+
k , M̃+

l )

×
{

qα
1 qβ

2 qγ
3 qρ

4(G · O)o+++
1234

+ qα
1 qβ

2 M̃+
k M̃+

l (G · O)o+++
12

+ qα
1 qγ

3 M̃+
j M̃+

l (G · O)o+++
13

+ qα
1 qρ

4M̃+
j M̃+

k (G · O)o+++
14

+ qβ
2 qγ

3 M̃o
i M̃+

l (G · O)o+++
23

+ qβ
2 qρ

4M̃o
i M̃+

k (G · O)o+++
24

+ qγ
3 qρ

4M̃o
i M̃+

j (G · O)o+++
34

+ M̃o
i M̃+

j M̃+
k M̃+

l (G · O)o+++
}

+
4∑

i,j=1

2∑
k,l=1

Gijkl(M̃o
i , M̃o

j , M̃+
k , M̃+

l )

×
{

qα
1 qβ

2 qγ
3 qρ

4(G · O)oo++
1234

+ qα
1 qβ

2 M̃+
k M̃+

l (G · O)oo++
12
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+ qα
1 qγ

3 M̃o
j M̃+

l (G · O)oo++
13

+ qα
1 qρ

4M̃o
j M̃+

k (G · O)oo++
14

+ qβ
2 qγ

3 M̃o
i M̃+

l (G · O)oo++
23

+ qβ
2 qρ

4M̃o
i M̃+

k (G · O)oo++
24

+ qγ
3 qρ

4M̃o
i M̃o

j (G · O)oo++
34

+M̃o
i M̃o

j M̃+
k M̃+

l (G · O)oo++
}

+
4∑

i,j,k=1

2∑
l=1

Gijkl(M̃o
i , M̃o

j , M̃o
k , M̃+

l )

×
{

qα
1 qβ

2 qγ
3 qρ

4(G · O)ooo+
1234

+ qα
1 qβ

2 M̃+
k M̃+

l (G · O)ooo+
12

+ qα
1 qγ

3 M̃o
j M̃+

l (G · O)ooo+
13

+ qα
1 qρ

4M̃o
j M̃o

k (G · O)ooo+
14

+ qβ
2 qγ

3 M̃o
i M̃+

l (G · O)ooo+
23

+ qβ
2 qρ

4M̃o
i M̃o

k (G · O)ooo+
24

+ qγ
3 qρ

4M̃o
i M̃o

j (G · O)ooo+
34

+M̃o
i M̃o

j M̃o
kM̃+

l (G · O)ooo+
}

+
1
8

4∑
i,j,k,l=1

Gijkl(M̃o
i , M̃o

j , M̃o
k , M̃o

l )

×
{

qα
1 qβ

2 qγ
3 qρ

4(G · O)oooo
1234

+ qα
1 qβ

2 M̃o
kM̃o

l (G · O)oooo
12

+ qα
1 qγ

3 M̃o
j M̃o

l (G · O)oooo
13

+ qα
1 qρ

4M̃o
j M̃o

k (G · O)oooo
14

+ qβ
2 qγ

3 M̃o
i M̃o

l (G · O)oooo
23

+ qβ
2 qρ

4M̃o
i M̃o

k (G · O)oooo
24

+ qγ
3 qρ

4M̃o
i M̃o

j (G · O)oooo
34

+ M̃o
i M̃o

j M̃o
kM̃o

l (G · O)oooo
} ]

. (67)

Analogously to (52) we have used here the shorthand no-
tation (G · O) for the various products of traces and oper-
ators whose explicit expressions are collected in Appendix
B. Notice that there are some terms without subscripts
which means there is no momentum contracted with the
results of the traces. For example, in (G · O)++++, the su-
perscripts denote the four charginos in the loop and the
absence of subscripts indicates that there is no contraction
with any momenta. The definitions of the q1, q2, q3 and q4
momenta, as well as the generic function Gijkl(M̃i, M̃j , M̃k,

M̃l) are given by

q1 ≡ q , q2 ≡ q + p,

q3 ≡ q + p + k, q4 ≡ q + p + k + r, (68)

and

Gijkl(M̃i, M̃j , M̃k, M̃l)

=
1[

q2
1 − M̃2

i

] [
q2
2 − M̃2

j

] [
q2
3 − M̃2

k

] [
q2
4 − M̃2

l

] .
In order to obtain the exact contributions to one-loop level
from the inos sector, one must work out the correspond-
ing Dirac traces in (67) and then write down the results
in terms of the standard one-loop Feynman integrals. We
have performed such a computation but due to the length
of the final expressions we prefer not to present these exact
results here and to restrict ourselves to the presentation
and discussion of just the corresponding asymptotic re-
sults.

By starting with the exact result given in (67) and by
inserting the asymptotic results of the corresponding inte-
grals and coupling matrices we have derived the four-point
Green’s functions from the inos sector in the large mass
limit. The results of these integrals are given in Appendix
A. After a lengthy calculation we can summarize the re-
sult for the four-point part of the effective action in the
asymptotic limit by the following expression:

Γ χ̃
eff [V ][4] =

4
3
π2
∫

dp̃dk̃dr̃dt̃δ(p + k + r + t)

×
∑

i,j,k,l

{
1
4
(
Ǒ1 + Ǒ2 + Ǒ4 + Ǒ6 + Ǒ8 + Ǒ10

+ Ǒ12 + Ǒ14 + Ǒ18 + Ǒ22 + Ǒ26 + Ǒ30)µνσλ

ijkl

+
1
8
Ǒ38µνσλ

ijkl +
(
Ǒ46 + Ǒ50 + Ǒ54

+ Ǒ58 + Ǒ60 + Ǒ68 + Ǒ76 + Ǒ84)µνσλ

ijkl

}
×
(

∆ε − log
M̃2

i + M̃2
j + M̃2

k + M̃2
l

4µ2
o

)
ßσµνλ, (69)

where ßσµνλ is the tree level tensor defined in (61) but
with the Lorentz indices interchanged, and the operators
Ǒµνσλ

ijkl are given in Appendix B.
At this point, we can already see that the asymptotic

result from the inos sector is proportional to the tree level
tensor after the proper symmetrization over the identical
external fields and therefore, we can conclude that the
inos decouple in the four-point functions.

For completeness we present in the following the cor-
responding asymptotic results for the four-point functions
with specific external gauge bosons. After a lengthy com-
putation, we get

∆ ΓAAW+W −
µνσλ χ̃ =

e2g2

12π2 ßµνσλ

×
{

−3
2
∆ε + g9(M̃+

1 , M̃+
2 , M̃0

1 , M̃0
2 , M̃0

3 , M̃0
4 )
}

+G5µνσλ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
, (70)

∆ ΓAZW+W −
µνσλ χ̃ =

eg3

12π2

1
cW

ßµνσλ

×
{

−3
2
c2
W∆ε + g10(M̃+

1 , M̃+
2 , M̃0

1 , M̃0
2 , M̃0

3 , M̃0
4 )
}
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+G6µνσλ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
, (71)

∆ ΓZZW+W −
µνσλ χ̃ = − g4

48π2

1
c2
W

ßµνσλ

×
{

6c4
W∆ε + g11(M̃+

1 , M̃+
2 , M̃0

1 , M̃0
2 , M̃0

3 , M̃0
4 )
}

+G7µνσλ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
, (72)

∆ ΓW+W −W+W −
µνσλ χ̃ =

g4

96π2 ßµσνλ

×
{

12∆ε + g12(M̃+
1 , M̃+

2 , M̃0
1 , M̃0

2 , M̃0
3 , M̃0

4 )
}

+G8µνσλ

[
O

(
p2

Σm̃2 ,
4m̃2

Σm̃2

)]
, (73)

where the functions Gkµνσλ (k = 5, . . . , 8) and gk(m̃2
t1 , m̃

2
t2 ,

m̃2
b1

, m̃2
b2

) (k = 9, . . . 12) are both finite, but the first ones
vanish in our asymptotic limit, whereas the second ones
are different from zero in this limit. The explicit form of
the latter can be found in Appendix B. In principle, they
contain all the potentially non-decoupling effects of these
four-point functions. As a check of the previous functional
computation we have also calculated all these four-point
functions by diagramatic methods and we have got the
same results.

As in the previous n point Green’s functions the one-
loop corrections in (70) to (73) are also proportional to
the tree level vertex and at the end, we can conclude that
those potentially non-decoupling effects in the four-point
functions can be reabsorbed into redefinitions of the vari-
ous SM parameters. Therefore, we can guarantee that the
decoupling of the inos in the four-point Green’s functions
take place as well.

In addition, we have checked that after the proper sym-
metrization over the indices and momenta of the identical
external fields, the ∆ΓAAAA, ∆ΓAAAZ , ∆ΓAAZZ ,
∆ΓAZZZ and ∆ΓZZZZ contributions are exactly zero in
our limit as was expected since there are no corresponding
tree level vertices. This is a rather non-trivial check of our
computation.

As can be seen from all the results in the present article
and those obtained and discussed in [16], we have proved
explicitly that the decoupling of sfermions, charginos and
neutralinos in the two-, three- and four-point functions
with external gauge bosons do indeed occur and this de-
coupling proceeds by assuming that all the sparticle mas-
ses are large as compared to the electroweak scale but
close to each other.

Once we have shown the decoupling of SUSY particles
in the two-, three- and four-point functions we can ask
about the decoupling in the n point functions, with n > 4.
In this case two important observations are in order. First,
due to the renormalizability of the MSSM there are no
divergent contributions to the five- or higher-point func-
tions since those functions vanish at the tree level and we
are working in renormalizable gauges. Thus, those Green’s
functions are finite and so are the sums of the Feynman
integrals corresponding to each given Green’s function. In

this case their asymptotic behavior in the above defined
region can trivially be obtained. Then it is immediate to
check that the decoupling of the SUSY particles also takes
place.

6 Conclusions

In this work we have studied the decoupling properties
of the SUSY particles appearing in the MSSM. In partic-
ular, we have shown that the SM can be considered as
the low-energy effective theory of the MSSM in the limit
where the sparticle masses are large. Our proof of decou-
pling in the Green’s functions with external gauge bosons
is quite general and does not depend on the particular
form of the soft breaking terms since it is performed com-
pletely in terms of the SUSY masses. The decoupling is
shown in the sense of the Appelquist–Carazzone theorem.
By this we mean that in the appropriate asymptotic re-
gion of large SUSY masses considered in this work, the
effect of the SUSY particles on the gauge boson Green’s
functions can be absorbed into redefinitions of the SM
parameters and gauge boson wave functions, or else they
correspond to new terms which are suppressed by nega-
tive powers of the SUSY masses. More specifically, the po-
tential non-decoupling SUSY effects that have been com-
puted in this paper, given by the divergent terms of O(∆ε)
and the finite functions fi and gi of (49), (50), (55), (56),
(62)-(65) and (70)–(73) can all be absorbed by a proper
choice of the SM counterterms, i.e, the gauge boson mass,
the coupling constant, the gauge parameter and the wave
function counterterms. Furthermore, the explicit fi and gi

values of these finite functions, given in (B.7) and (B.8),
will determine the corresponding values of the renormal-
ization scheme dependent finite contributions to the men-
tioned SM counterterms. In particular, they can be used
to find relations between the counterterms in different
renormalization schemes, e.g, between the MS and on-
shell counterterms.

Since we have demonstrated here that all these poten-
tial non-decoupling effects can be absorbed into the defini-
tions of the SM parameters, they are finally unobservable.
Namely, they cancel out in the physical observables with
external gauge bosons. Indeed, it has already been shown
by an explicit computation in [16] of the particular ob-
servables S, T and U that all the heavy SUSY particle
effects do in fact decouple there as expected.

The demonstration of decoupling of SUSY particles
performed in this work is valid for the case where all
the sparticle masses are much larger than the electroweak
scale, but their squared mass differences are smaller than
their sums for each MSSM sector. The other asymptotic
region of large SUSY masses corresponding to the case
where the squared mass differences are of the same order
as their sums has not been considered in this paper and
should be treated as an independent case.

In addition to the SUSY particles, the MSSM has also
other particles which are not present in the SM. These are
the extra Higgs particles that must be added to the MSSM
in order to produce fermion masses and that through their



A. Dobado et al.: The SM as the quantum low-energy effective theory of the MSSM 687

SUSY partners give rise to an anomaly free theory. In or-
der to provide a complete proof that the SM is really the
low-energy effective theory of the MSSM one must show
that these extra scalars also decouple in the above men-
tioned sense. The work performed in [18] shows that this
is indeed the case. In addition, one must also study not
just the Green’s functions with external gauge bosons, but
also with all the possible SM particles in the external legs.
Particularly interesting in the context of decoupling could
be the Green’s functions (and therefore the observables
as well) with external heavy fermions where due to the
enhancement effect of the heavy fermion masses the de-
coupling of the SUSY particles could either not occur or
to proceed much more slowly. Work in progress in this
direction is being done but the results will be presented
elsewhere.
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Appendix A

In this Appendix we give the definition of the one-loop
integrals that have been used in the computation of the
three- and four-point functions and their results in the
large mass limit. The one-loop integrals contributing to
the two-point functions were presented in our previous
work [16] to which we refer the reader for completeness.
As all these integrals can be written in terms of the stan-
dard scalar and tensor integrals [17], we start by reviewing
the definition of these standard two-, three- and four-point
integrals in the following. From now on, we have the fol-
lowing notation: ∫

dq̂ ≡
∫

dDq

(2π)D
µ4−D

o ,

and use the metric gµν = diag (1,−1,−1,−1).

(1) Standard integrals.

A0(m1) ≡ −i16π2
∫

dq̂
1

D1
,

B0,µ,µν(p, m1, m2) ≡ −i16π2
∫

dq̂
{1, qµ, qµqν}

D1D2
,

C0,µ,µν,µνσ(p, k, m1, m2, m3)

≡ −i16π2
∫

dq̂
{1, qµ, qµqν , qµqνqσ}

D1D2D3
,

D0,µ,µν,µνσ,µνσλ(p, k, r, m1, m2, m3, m4)

≡ −i16π2
∫

dq̂
{1, qµ, qµqν , qµqνqσ, qµqνqσqλ}

D1D2D3D4
,

(A.1)

with the denominators given by

D1 =
[
q2 − m2

1
]
,

D2 =
[
(q + p)2 − m2

2
]
,

D3 =
[
(q + p + k)2 − m2

3
]
,

D4 =
[
(q + p + k + r)2 − m2

4
]
. (A.2)

(2) One-loop integrals. The three-point integrals appear-
ing in (44), (C.7) and (C.8) are given in terms of the
standard integrals by

T ab
µ (p, m̃fa , m̃fb

) = 2Bµ(p, m̃fa , m̃fb
)

+pµB0(p, m̃fa
, m̃fb

), (A.3)

T abc
µνσ(p, k, m̃fa

, m̃fb
, m̃fc

) = {8Cµνσ + 4[(p + k)σCµν

+(2p + k)νCµσ + pµCνσ] + 2[(p + k)σ(2p + k)νCµ

+pµ(p + k)σCν + pµ(2p + k)νCσ] + pµ(2p + k)ν

× (p + k)σC0} (p, k, m̃fa
, m̃fb

, m̃fc
), (A.4)

T ijk
µνσ(p, k, m̃i, m̃j , m̃k) = {4Cµνσ + 2(k + p)σCµν

+2(k + 2p)νCµσ + 2pµCνσ

+(kνpµ + kµpν + 2pµpν)Cσ + (kνpσ

+kσpν + 2pνpσ)Cµ + (kσpµ − kµpσ)Cν

−gαβ [gµνCαβσ + gσνCαβµ + gσµCαβν

+2gσνCβµ(k + p)α + Cαβ(gσµ(k + 2p)ν

+gµνkσ − gσνkµ) + 2gµνCβσpα

+Cβ(gσµpα(k + 2p)ν + gσµkαpν

+gµν(kσpα − kαpσ) + gσν(kαpµ − kµpα))
+pβ(k + p)α(gµνCσ + gσνCµ

− gσµCν)]} (p, k, m̃i, m̃j , m̃k), (A.5)

Iijk
µνσ(p, k, m̃i, m̃j , m̃k) = {gµνCσ + gσνCµ

−gσµCν} (p, k, m̃i, m̃j , m̃k), (A.6)

Pijk
µνσ(p, k, m̃i, m̃j , m̃k) = {gσν(pµC0 + Cµ)

+gσµ(pνC0 + Cν) − gµν(pσC0 + Cσ)}
×(p, k, m̃i, m̃j , m̃k), (A.7)

J ijk
µνσ(p, k, m̃i, m̃j , m̃k) = {gµν(Cσ + (k + p)σC0)

−gσν(Cµ+(k + p)µC0)+gσµ(Cν + (k + p)νC0)}
×(p, k, m̃i, m̃j , m̃k), (A.8)

where the variables within the last parentheses corre-
spond to the arguments of the corresponding integrals.
Now, we present the four-point integrals appearing in
the computation of the four-point functions. Let us
begin with those involved in the computation of the
sfermions contributions, that is, in (58):

Jab
p+k(p + k, m̃fa

, m̃fb
) = B0(p + k, m̃fa

, m̃fb
), (A.9)

Jabc
µν (p, k, m̃fa , m̃fb

, m̃fc) = {4Cµν + 2(k + 2p)νCµ

+ 2pµCν + pµ(k + 2p)νC0}
×(p, k, m̃fa

, m̃fb
, m̃fc

), (A.10)

Jabcd
µνσλ(p, k, r, m̃fa

, m̃fb
, m̃fc

, m̃fd
) = {16Dµνσλ

+8(k + p + r)λDµνσ + 8pµDνσλ

+8(2k + 2p + r)σDµνλ + 8(k + 2p)νDµσλ
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+4(2k + 2p + r)σ(k + p + r)λ(Dµν + pµDν)
+2(2k + 2p + r)σ(k + 2p)ν(2Dµλ + pµDλ)
+2(k + 2p)ν(k + p + r)λ(2Dµσ + pµDσ)
+2(2k + 2p + r)σ(k + 2p)ν(k + p + r)λDµ

+pµ(k + 2p)ν(k + p + r)λ(2k + 2p + r)σD0

+4pµ(k + p + r)λDνσ + 4pµ(k + 2p)νDσλ

+ 4pµ(2k + 2p + r)σDνλ}
×(p, k, r, m̃fa

, m̃fb
, m̃fc

, m̃fd
).

(A.11)

(3) Asymptotic results. As we said before, we compute all
the integrals in the large mass limit by using the m-
theorem [15]. Some examples of the applicability of this
theorem in the present context of decoupling of SUSY
particles can be found in [16].
We present in the following the results for the standard
one-loop integrals in the limit of heavy SUSY particles.
In taking this limit we require in addition that the dif-
ferences of masses be always smaller than their sums,
i.e m̃2 � k2 and |m̃2

i − m̃2
j | � |m̃2

i + m̃2
j |. The results

of the standard integrals in our asymptotic limit are
as follows:

A0(m1) =
(

∆ε + 1 − log
m2

1

µ2
o

)
m2

1,

B0(p, m1, m2) =
(

∆ε − log
m2

1 + m2
2

2µ2
o

)
,

Bµ(p, m1, m2) = −1
2
pµ

(
∆ε − log

m2
1 + m2

2

2µ2
o

)
,

Bµν(p, m1, m2) =
1
4

(m2
1 + m2

2)

×
(

∆ε + 1 − log
m2

1 + m2
2

2µ2
o

)
gµν

− 1
12

p2
(

∆ε − log
m2

1 + m2
2

2µ2
o

)
gµν

+
1
3
pµpν

(
∆ε − log

m2
1 + m2

2

2µ2
o

)
,

C0(p, k, m1, m2, m3) = 0, Cµ(p, k, m1, m2, m3) = 0,

Cµν(p, k, m1, m2, m3) =
1
4

(
∆ε − log

m2
1 + m2

2 + m2
3

3µ2
o

)
gµν ,

Cµνσ(p, k, m1, m2, m3) =

− 1
12

(2p + k)ρ

(
∆ε − log

m2
1 + m2

2 + m2
3

3µ2
o

)
× [gµνgσρ + gµσgνρ + gµρgνσ] ,

D0(p, k, r, m1, m2, m3, m4) = 0,

Dµ(p, k, r, m1, m2, m3, m4) = 0,

Dµν(p, k, r, m1, m2, m3, m4) = 0,

Dµνσ(p, k, r, m1, m2, m3, m4) = 0,

Dµνσλ(p, k, r, m1, m2, m3, m4) =
1
24

(
∆ε − log

m2
1 + m2

2 + m2
3 + m2

4

4µ2
o

)

× [gµνgσλ + gµσgνλ + gµλgνσ] . (A.12)

The corrections to these formulae are suppressed by in-
verse powers of the sums of the corresponding squared
masses and vanish in the asymptotic large mass limit.

Finally, notice that the results for the three- and four-
point integrals appearing in our calculations can easily be
obtained from the above formulae by substitution in (A.3)
to (A.11), respectively. Here we will not present these re-
sults for brevity.

This completes our analysis and results of the three-
and four-point integrals that have appeared in the present
work.

Appendix B

In this Appendix we collect the definitions of all the oper-
ators that have been introduced in this work as well as the
different functions, fi (i = 1 . . . 4), and gi (i = 1 . . . 12),
appearing in the asymptotic results for the three- and four-
point Green’s functions, respectively. Since we work in
the momentum space, all these operators are functions of
the corresponding momenta. Thus, for instance, the three-
point function operator given by Ôµνσ ∼ V µ

1 V ν
2 V σ

3 really
means Ôµνσ ∼ V µ

1 (−p)V ν
2 (−k)V σ

3 (−r) and similarly for
the other operators. In the following we omit this explicit
momentum dependence for brevity.

The operators in (44) are defined by

Ô1µ = eAµQ̂f +
g

cw
ZµĜf

+
g√
2
W+µΣtb

f +
g√
2
W−µΣbt

f ,

Ô2µν = e2Q̂2
fAµAν +

2ge

cw
AµZνQ̂f Ĝf +

g2

c2
w

Ĝ2
fZµZν

+
g2

2
ΣfWµ+W ν−

+
eg√

2
yf̃Aµ

(
W ν+Σtb

f + W ν−Σbt
f

)
− g2

√
2
yf̃

s2
w

cw
Zµ
(
W ν+Σtb

f + W ν−Σbt
f

)
. (B.1)

In order to write a general expression for the three- and
four-point functions from the inos contributions that have
been presented in (52) and (67), we have introduced the
shorthand notation (G · O), which we give explicitly in the
following. For this purpose we use the compact notation:

Gµνασ ≡ Tr[γµγνγαγσ],
Gαµβνγσ ≡ Tr[γαγµγβγνγγγσ],

Gαµβνγσρλ ≡ Tr[γαγµγβγνγγγσγργλ]. (B.2)

The expressions for each (G · O) term in (52) for the three-
point functions are

(G · O)+++
123 = Gαµβνγσ

(
Ô1 + Ô2 + Ô4 + Ô6 + Ô8

)
,
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(G · O)+++
1 = Gαµνσ

(
Ô1 + Ô3 + Ô5 + Ô6 + Ô9

)
,

(G · O)+++
2 = Gµανσ

(
Ô1 + Ô3 + Ô4 + Ô7 + Ô10

)
,

(G · O)+++
3 = Gµνασ

(
Ô1 + Ô2 + Ô5 + Ô7 + Ô11

)
,

(G · O)o++
123 = Gαµβνγσ

(
Ô16 + Ô18

)
,

(G · O)o++
1 = Gαµνσ

(
Ô16 + Ô19

)
,

(G · O)o++
2 = Gµανσ

(
Ô17 + Ô20

)
,

(G · O)o++
3 = Gµνασ

(
Ô17 + Ô21

)
,

(G · O)oo+
123 = GαµβνγσÔ22,

(G · O)oo+
1 = GαµνσÔ23,

(G · O)oo+
2 = GµανσÔ24,

(G · O)oo+
3 = GµνασÔ25,

(G · O)ooo
123 = GαµβνγσÔ12,

(G · O)ooo
1 = GαµνσÔ13,

(G · O)ooo
2 = GµανσÔ14,

(G · O)ooo
3 = GµνασÔ15,

(B.3)

where the traces are given in (B.2) and the operators
whose indices have been omitted here for shortness are
given by

Ô1µνσ
ijk = −e3AµAνAσδijδjkδki

+e2 g

2cW
[AµAνZσδijδjk(O′

L + O′
R)ki

+AµZνAσδijδki(O′
L + O′

R)jk

+ ZµAνAσδjkδki(O′
L + O′

R)ij ] ,

Ô
2(3)µνσ

ijk = −e
g2

2cW
2 AµZνZσδij

(
O′

Lki
O′

L(R)jk

+ O′
Rki

O′
R(L)jk

)
,

Ô
4(5)µνσ

ijk = −e
g2

2cW
2 AσZµZνδki

× (O′
Lij O

′
L(R)jk

+ O′
Rij O

′
R(L)jk

)
,

Ô
6(7)µνσ

ijk = −e
g2

2cW
2 AνZµZσδjk

× (O′
Lij

O′
L(R)ki

+ O′
Rij

O′
R(L)ki

)
,

Ô
8(9)µνσ

ijk =
g3

2cW
3 ZµZνZσ

× (O′
Lij O

′
L(R)jk

O′
Lki

+ O′
Rij O

′
R(L)jk

O′
Rki

)
,

Ô
10(11)µνσ

ijk =
g3

2cW
3 ZµZνZσ

× (O′
Lij

O′
L(R)jk

O′
Rki

+ O′
Rij

O′
R(L)jk

O′
Lki

)
,

Ô
12(13)µνσ

ijk =
g3

2cW
3 ZµZνZσ

× (O′′
Lij

O′′
L(R)jk

O′′
Lki

+ O′′
Rij

O′′
R(L)jk

O′′
Rki

)
,

Ô
14(15)µνσ

ijk =
g3

2cW
3 ZµZνZσ

× (O′′
Lij

O′′
L(R)jk

O′′
Rki

+ O′′
Rij

O′′
R(L)jk

O′′
Lki

)
,

Ô
16(17)µνσ

ijk = −e
g2

2
AνW−

µ W+
σ δjk

×
(
OLij O

+
L(R)ki

+ ORij O
+
R(L)ki

)
,

Ô
18(19)µνσ

ijk =
g3

2cW
ZνW−

µ W+
σ

× (OLij
O′

L(R)jk
O+

Lki
+ ORij

O′
R(L)jk

O+
Rki

)
,

Ô
20(21)µνσ

ijk =
g3

2cW
ZνW−

µ W+
σ

× (OLij O
′
L(R)jk

O+
Rki

+ ORij
O′

R(L)jk
O+

Lki

)
,

Ô
22(23)µνσ

ijk =
g3

2cW
ZµW−

ν W+
σ

× (O′′
Lij OL(R)jk

O+
Lki

+ O′′
Rij OR(L)jk

O+
Rki

)
,

Ô
24(25)µνσ

ijk =
g3

2cW
ZµW−

ν W+
σ

× (O′′
Lij

OL(R)jk
O+

Rki
+ O′′

Rij
OR(L)jk

O+
Lki

)
. (B.4)

The generic terms (G · O) in the inos contributions to
the four-point functions given in (67) can be written as

(G · O)++++
1234 = Gαµβνγσρλ

(
Ǒ1 + Ǒ2 + Ǒ4 + Ǒ6 + Ǒ8

+Ǒ10 + Ǒ12 + Ǒ14 + Ǒ18 + Ǒ22 + Ǒ26 + Ǒ30) ,

(G · O)++++
14 = Gαµνσρλ

(
Ǒ1 + Ǒ2 + Ǒ5 + Ǒ6 + Ǒ9

+Ǒ10 + Ǒ13 + Ǒ17 + Ǒ18 + Ǒ23 + Ǒ27 + Ǒ31) ,

(G · O)++++
13 = Gαµνγσλ

(
Ǒ1 + Ǒ3 + Ǒ5 + Ǒ6 + Ǒ8

+Ǒ11 + Ǒ13 + Ǒ16 + Ǒ19 + Ǒ23 + Ǒ29 + Ǒ34) ,

(G · O)++++
12 = Gαµβνσλ

(
Ǒ1 + Ǒ3 + Ǒ4 + Ǒ6 + Ǒ9

+Ǒ11 + Ǒ12 + Ǒ15 + Ǒ19 + Ǒ22 + Ǒ28 + Ǒ32) ,

(G · O)++++
34 = Gµνγσρλ

(
Ǒ1 + Ǒ2 + Ǒ4 + Ǒ7 + Ǒ8

+Ǒ11 + Ǒ13 + Ǒ14 + Ǒ21 + Ǒ25 + Ǒ29 + Ǒ35) ,

(G · O)++++
24 = Gµβνσρλ

(
Ǒ1 + Ǒ2 + Ǒ5 + Ǒ7 + Ǒ9

+Ǒ11 + Ǒ12 + Ǒ17 + Ǒ21 + Ǒ24 + Ǒ28 + Ǒ33) ,

(G · O)++++
23 = Gµβνγσλ

(
Ǒ1 + Ǒ3 + Ǒ5 + Ǒ7 + Ǒ8

+Ǒ10 + Ǒ12 + Ǒ16 + Ǒ20 + Ǒ24 + Ǒ26 + Ǒ36) ,

(G · O)++++ = Gµνσλ

(
Ǒ1 + Ǒ3 + Ǒ4 + Ǒ7 + Ǒ9

+Ǒ10 + Ǒ13 + Ǒ15 + Ǒ20 + Ǒ25 + Ǒ27 + Ǒ37) ,

(G · O)o+++
1234 = Gαµβνγσρλ

(
Ǒ46 + Ǒ50 + Ǒ58 + Ǒ60) ,

(G · O)o+++
14 = Gαµνσρλ

(
Ǒ46 + Ǒ51 + Ǒ58 + Ǒ61) ,

(G · O)o+++
13 = Gαµνγσλ

(
Ǒ47 + Ǒ51 + Ǒ58 + Ǒ64) ,

(G · O)o+++
12 = Gαµβνσλ

(
Ǒ47 + Ǒ50 + Ǒ58 + Ǒ62) ,

(G · O)o+++
34 = Gµνγσρλ

(
Ǒ49 + Ǒ53 + Ǒ59 + Ǒ65) ,

(G · O)o+++
24 = Gµβνσρλ

(
Ǒ49 + Ǒ52 + Ǒ59 + Ǒ63) ,
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(G · O)o+++
23 = Gµβνγσλ

(
Ǒ48 + Ǒ52 + Ǒ59 + Ǒ66) ,

(G · O)o+++ = Gµνσλ

(
Ǒ48 + Ǒ53 + Ǒ59 + Ǒ67) ,

(G · O)oo++
1234 = Gαµβνγσρλ

(
Ǒ54 + Ǒ68 + Ǒ84) ,

(G · O)oo++
14 = Gαµνσρλ

(
Ǒ55 + Ǒ69 + Ǒ85) ,

(G · O)oo++
13 = Gαµνγσλ

(
Ǒ55 + Ǒ72 + Ǒ88) ,

(G · O)oo++
12 = Gαµβνσλ

(
Ǒ54 + Ǒ70 + Ǒ86) ,

(G · O)oo++
34 = Gµνγσρλ

(
Ǒ57 + Ǒ73 + Ǒ89) ,

(G · O)oo++
24 = Gµβνσρλ

(
Ǒ56 + Ǒ71 + Ǒ87) ,

(G · O)oo++
23 = Gµβνγσλ

(
Ǒ56 + Ǒ74 + Ǒ90) ,

(G · O)oo++ = Gµνσλ

(
Ǒ57 + Ǒ75 + Ǒ91) ,

(G · O)ooo+
1234 = GαµβνγσρλǑ76,

(G · O)ooo+
14 = GαµνσρλǑ77,

(G · O)ooo+
13 = GαµνγσλǑ80,

(G · O)ooo+
12 = GαµβνσλǑ78,

(G · O)ooo+
34 = GµνγσρλǑ81,

(G · O)ooo+
24 = GµβνσρλǑ79,

(G · O)ooo+
23 = GµβνγσλǑ82,

(G · O)ooo+ = GµνσλǑ83,

(G · O)oooo
1234 = GαµβνγσρλǑ38,

(G · O)oooo
14 = GαµνσρλǑ39,

(G · O)oooo
13 = GαµνγσλǑ42,

(G · O)oooo
12 = GαµβνσλǑ40,

(G · O)oooo
34 = GµνγσρλǑ43,

(G · O)oooo
24 = GµβνσρλǑ41,

(G · O)oooo
23 = GµβνγσλǑ44,

(G · O)oooo = GµνσλǑ45, (B.5)

where we have assumed again the notation for the traces
given in (B.2) and the corresponding operators introduced
here are

Ǒ1µνσλ
ijkl = e4AµAνAσAλδijδjkδklδli

−e3 g

2cW
[ZµAνAσAλδjkδklδli(O′

L + O′
R)ij

+AµZνAσAλδijδklδli(O′
L + O′

R)jk

+AµAνZσAλδijδjkδli(O′
L + O′

R)kl

+ AµAνAσZλδijδjkδkl(O′
L + O′

R)li] ,

Ǒ
2(3)µνσλ

ijkl = e2 g2

2cW
2 AµAνZσZλ

×δijδjk

(
O′

Lkl
O′

L(R)li
+ O′

Rkl
O′

R(L)li

)
,

Ǒ
4(5)µνσλ

ijkl = e2 g2

2cW
2 AµAσZνZλ

×δijδkl

(
O′

Ljk
O′

L(R)li
+ O′

Rjk
O′

R(L)li

)
,

Ǒ
6(7)µνσλ

ijkl = e2 g2

2cW
2 AνAσZµZλ

×δjkδkl

(
O′

Lij
O′

L(R)li
+ O′

Rij
O′

R(L)li

)
,

Ǒ
8(9)µνσλ

ijkl = e2 g2

2cW
2 AµAλZνZσ

×δijδli

(
O′

Ljk
O′

L(R)kl
+ O′

Rjk
O′

R(L)kl

)
,

Ǒ
10(11)µνσλ

ijkl = e2 g2

2cW
2 AνAλZµZσ

×δjkδli

(
O′

Lij O
′
L(R)kl

+ O′
Rij O

′
R(L)kl

)
,

Ǒ
12(13)µνσλ

ijkl = e2 g2

2cW
2 AσAλZµZν

×δklδli

(
O′

Lij
O′

L(R)jk
+ O′

Rij
O′

R(L)jk

)
,

Ǒ
14(15)µνσλ

ijkl = −e
g3

2cW
3 AµZνZσZλ

×δij

(
O′

Ljk
O′

L(R)kl
O′

Lli
+ O′

Rjk
O′

R(L)kl
O′

Rli

)
,

Ǒ
16(17)µνσλ

ijkl = −e
g3

2cW
3 AµZνZσZλ

×δij

(
O′

Ljk
O′

L(R)kl
O′

Rli
+ O′

Rjk
O′

R(L)kl
O′

Lli

)
,

Ǒ
18(19)µνσλ

ijkl = −e
g3

2cW
3 AνZµZσZλ

×δjk

(
O′

Lij O
′
L(R)kl

O′
Lli

+ O′
Rij O

′
R(L)kl

O′
Rli

)
,

Ǒ
20(21)µνσλ

ijkl = −e
g3

2cW
3 AνZµZσZλ

×δjk

(
O′

Lij
O′

L(R)kl
O′

Rli
+ O′

Rij
O′

R(L)kl
O′

Lli

)
,

Ǒ
22(23)µνσλ

ijkl = −e
g3

2cW
3 AσZµZνZλ

×δkl

(
O′

Lij
O′

L(R)jk
O′

Lli
+ O′

Rij
O′

R(L)jk
O′

Rli

)
,

Ǒ
24(25)µνσλ

ijkl = −e
g3

2cW
3 AσZµZνZλ

×δkl

(
O′

Lij
O′

L(R)jk
O′

Rli
+ O′

Rij
O′

R(L)jk
O′

Lli

)
,

Ǒ
26(27)µνσλ

ijkl = −e
g3

2cW
3 AλZµZνZσ

×δli

(
O′

Lij O
′
L(R)jk

O′
Lkl

+ O′
Rij O

′
R(L)jk

O′
Rkl

)
,

Ǒ
28(29)µνσλ

ijkl = −e
g3

2cW
3 AλZµZνZσ

×δli

(
O′

Lij
O′

L(R)jk
O′

Rkl
+ O′

Rij
O′

R(L)jk
O′

Lkl

)
,

Ǒ
30(31)µνσλ

ijkl =
g4

2c4
W

ZµZνZσZλ

× (O′
Lij O

′
L(R)jk

O′
Lkl

O′
Lli

+O′
Rij O

′
R(L)jk

O′
Rkl

O′
Rli

)
,

Ǒ
32(33)µνσλ

ijkl =
g4

2c4
W

ZµZνZσZλ

× (O′
Lij O

′
Ljk

O′
Rkl

O′
L(R)li

+O′
Rij O

′
Rjk

O′
Lkl

O′
R(L)li

)
,

Ǒ
34(35)µνσλ

ijkl =
g4

2c4
W

ZµZνZσZλ

× (O′
Lij O

′
Rjk

O′
Rkl

O′
L(R)li

+O′
Rij O

′
Ljk

O′
Lkl

O′
R(L)li

)
,

Ǒ
36(37)µνσλ

ijkl =
g4

2c4
W

ZµZνZσZλ

× (O′
Lij O

′
L(R)jk

O′
Lkl

O′
Rli

+O′
Rij O

′
R(L)jk

O′
Rkl

O′
Lli

)
,
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Ǒ
38(39)µνσλ

ijkl =
g4

2c4
W

ZµZνZσZλ

(
O′′

Lij O
′′
L(R)jk

×O′′
Lkl

O′′
Lli

+ O′′
Rij

O′′
R(L)jk

O′′
Rkl

O′′
Rli

)
,

Ǒ
40(41)µνσλ

ijkl =
g4

2c4
W

ZµZνZσZλ

(
O′′

Lij
O′′

Ljk

×O′′
Rkl

O′′
L(R)li

+ O′′
Rij

O′′
Rjk

O′′
Lkl

O′′
R(L)li

)
,

Ǒ
42(43)µνσλ

ijkl =
g4

2c4
W

ZµZνZσZλ

(
O′′

Lij
O′′

Rjk

×O′′
Rkl

O′′
L(R)li

+ O′′
Rij

O′′
Ljk

O′′
Lkl

O′′
R(L)li

)
,

Ǒ
44(45)µνσλ

ijkl =
g4

2c4
W

ZµZνZσZλ

(
O′′

Lij O
′′
L(R)jk

×O′′
Lkl

O′′
Rli

+ O′′
Rij

O′′
R(L)jk

O′′
Rkl

O′′
Lli

)
,

Ǒ
46(47)µνσλ

ijkl = −e
g3

2cW
W−

µ AνZσW+
λ

×δjk

(
OLij

O′
L(R)kl

O+
Lli

+ ORij
O′

R(L)kl
O+

Rli

)
,

Ǒ
48(49)µνσλ

ijkl = −e
g3

2cW
W−

µ AνZσW+
λ

×δjk

(
OLij

O′
L(R)kl

O+
Rli

+ ORij
O′

R(L)kl
O+

Lli

)
,

Ǒ
50(51)µνσλ

ijkl = −e
g3

2cW
W−

µ ZνAσW+
λ

×δkl

(
OLij

O′
L(R)jk

O+
Lli

+ ORij
O′

R(L)jk
O+

Rli

)
,

Ǒ
52(53)µνσλ

ijkl = −e
g3

2cW
W−

µ ZνAσW+
λ

×δkl

(
OLij O

′
L(R)jk

O+
Rli

+ ORij O
′
R(L)jk

O+
Lli

)
,

Ǒ
54(55)µνσλ

ijkl = −e
g3

2cW
W−

ν ZµAσW+
λ

×δkl

(
O′′

Lij OL(R)jk
O+

Lli
+ O′′

Rij OR(L)jk
O+

Rli

)
,

Ǒ
56(57)µνσλ

ijkl = −e
g3

2cW
W−

ν ZµAσW+
λ

×δkl

(
O′′

Lij
OL(R)jk

O+
Rli

+ O′′
Rij

OR(L)jk
O+

Lli

)
,

Ǒ
58(59)µνσλ

ijkl =
e2g2

2
W−

µ AνAσW+
λ

×δjkδkl

(
OLij

O+
L(R)li

+ ORij
O+

R(L)li

)
,

Ǒ
60(61)µνσλ

ijkl =
g4

2c2
W

W−
µ ZνZσW+

λ

× (OLij
O′

L(R)jk
O′

Lkl
O+

Lli
+ ORij

O′
R(L)jk

O′
Rkl

O+
Rli

)
,

Ǒ
62(63)µνσλ

ijkl =
g4

2c2
W

W−
µ ZνZσW+

λ

×
(
OLij O

′
Ljk

O′
Rkl

O+
L(R)li

+ ORij O
′
Rjk

O′
Lkl

O+
R(L)li

)
,

Ǒ
64(65)µνσλ

ijkl =
g4

2c2
W

W−
µ ZνZσW+

λ

×
(
OLij O

′
Rjk

O′
Rkl

O+
L(R)li

+ ORij O
′
Ljk

O′
Lkl

O+
R(L)li

)
,

Ǒ
66(67)µνσλ

ijkl =
g4

2c2
W

W−
µ ZνZσW+

λ

× (OLij
O′

L(R)jk
O′

Lkl
O+

Rli
+ ORij

O′
R(L)jk

O′
Rkl

O+
Lli

)
,

Ǒ
68(69)µνσλ

ijkl =
g4

2c2
W

W−
ν ZµZσW+

λ

× (O′′
Lij

OL(R)jk
O′

Lkl
O+

Lli
+ O′′

Rij
OR(L)jk

O′
Rkl

O+
Rli

)
,

Ǒ
70(71)µνσλ

ijkl =
g4

2c2
W

W−
ν ZµZσW+

λ

×
(
O′′

Lij
OLjk

O′
Rkl

O+
L(R)li

+ O′′
Rij

ORjk
O′

Lkl
O+

R(L)li

)
,

Ǒ
72(73)µνσλ

ijkl =
g4

2c2
W

W−
ν ZµZσW+

λ

×
(
O′′

Lij
ORjk

O′
Rkl

O+
L(R)li

+ O′′
Rij

OLjk
O′

Lkl
O+

R(L)li

)
,

Ǒ
74(75)µνσλ

ijkl =
g4

2c2
W

W−
ν ZµZσW+

λ

× (O′′
Lij

OL(R)jk
O′

Lkl
O+

Rli
+ O′′

Rij
OR(L)jk

O′
Rkl

O+
Lli

)
,

Ǒ
76(77)µνσλ

ijkl =
g4

2c2
W

W−
σ ZµZνW+

λ

× (O′′
Lij O

′′
L(R)jk

OLkl
O+

Lli
+ O′′

Rij O
′′
R(L)jk

ORkl
O+

Rli

)
,

Ǒ
78(79)µνσλ

ijkl =
g4

2c2
W

W−
σ ZµZνW+

λ

×
(
O′′

Lij
O′′

Ljk
ORkl

O+
L(R)li

+O′′
Rij

O′′
Rjk

OLkl
O+

R(L)li

)
,

Ǒ
80(81)µνσλ

ijkl =
g4

2c2
W

W−
σ ZµZνW+

λ

×
(
O′′

Lij
O′′

Rjk
ORkl

O+
L(R)li

+O′′
Rij

O′′
Ljk

OLkl
O+

R(L)li

)
,

Ǒ
82(83)µνσλ

ijkl =
g4

2c2
W

W−
σ ZµZνW+

λ

× (O′′
Lij

O′′
L(R)jk

OLkl
O+

Rli
+ O′′

Rij
O′′

R(L)jk
ORkl

O+
Lli

)
,

Ǒ
84(85)µνσλ

ijkl =
g4

2
W−

µ W+
ν W−

σ W+
λ

×
(
OLik

O+
L(R)kj

OLjl
O+

Lli
+ ORik

O+
R(L)kj

ORjl
O+

Rli

)
,

Ǒ
86(87)µνσλ

ijkl =
g4

2
W−

µ W+
ν W−

σ W+
λ

×
(
OLik

O+
Lkj

ORjl
O+

L(R)li
+ ORik

O+
Rkj

OLjl
O+

R(L)li

)
,

Ǒ
88(89)µνσλ

ijkl =
g4

2
W−

µ W+
ν W−

σ W+
λ

×
(
OLik

O+
Rkj

ORjl
O+

L(R)li
+ ORik

O+
Lkj

OLjl
O+

R(L)li

)
,

Ǒ
90(91)µνσλ

ijkl =
g4

2
W−

µ W+
ν W−

σ W+
λ

×
(
OLik

O+
L(R)kj

OLjl
O+

Rli
+ ORik

O+
R(L)kj

ORjl
O+

Lli

)
.

(B.6)

The definitions of the coupling matrices, Q̂f , Ĝf , Σtb
f ,

Σbt
f , Σf , OL,R, O′

L,R and O′′
L,R of the above equations can

be found in [16].
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Finally, we give explicitly in the following the expres-
sions for the fi and gi functions:

f1 = −c2
bc

2
t log

2m̃2
t1 + m̃2

b1

3µ2
o

− s2
bc

2
t log

2m̃2
t1 + m̃2

b2

3µ2
o

− c2
bs

2
t log

2m̃2
t2 + m̃2

b1

3µ2
o

− s2
bs

2
t log

2m̃2
t2 + m̃2

b2

3µ2
o

− 1
2
c2
bc

2
t log

m̃2
t1 + 2m̃2

b1

3µ2
o

− 1
2
s2

bc
2
t log

m̃2
t1 + 2m̃2

b2

3µ2
o

− 1
2
c2
bs

2
t log

m̃2
t2 + 2m̃2

b1

3µ2
o

− 1
2
s2

bs
2
t log

m̃2
t2 + 2m̃2

b2

3µ2
o

,

f2 = −c2
bc

2
t

[(
c2
t

2
− 2

3
s2
W

)
log

2m̃2
t1 + m̃2

b1

3µ2
o

+
(

c2
b

2
− 1

3
s2
W

)
log

m̃2
t1 + 2m̃2

b1

3µ2
o

]

− s2
bs

2
t

[(
s2

t

2
− 2

3
s2
W

)
log

2m̃2
t2 + m̃2

b2

3µ2
o

+
(

s2
b

2
− 1

3
s2
W

)
log

m̃2
t2 + 2m̃2

b2

3µ2
o

]

− s2
bc

2
t

[(
c2
t

2
− 2

3
s2
W

)
log

2m̃2
t1 + m̃2

b2

3µ2
o

+
(

s2
b

2
− 1

3
s2
W

)
log

m̃2
t1 + 2m̃2

b2

3µ2
o

]

− c2
bs

2
t

[(
s2

t

2
− 2

3
s2
W

)
log

2m̃2
t2 + m̃2

b1

3µ2
o

+
(

c2
b

2
− 1

3
s2
W

)
log

m̃2
t2 + 2m̃2

b1

3µ2
o

]

− c2
bc

2
t s

2
t log

m̃2
t1 + m̃2

t2 + m̃2
b1

3µ2
o

− s2
bc

2
t s

2
t log

m̃2
t1 + m̃2

t2 + m̃2
b2

3µ2
o

− c2
bs

2
bc

2
t log

m̃2
t1 + m̃2

b1
+ m̃2

b2

3µ2
o

− c2
bs

2
bs

2
t log

m̃2
t2 + m̃2

b1
+ m̃2

b2

3µ2
o

,

f3 = − log
2M̃+2

1 + M̃o2
2

3µ2
o

− 1
4

log
2M̃+2

2 + M̃o2
3

3µ2
o

− 1
4

log
2M̃+2

2 + M̃o2
4

3µ2
o

,

f4 = (s2
W − 1) log

2M̃+2
1 + M̃o2

2

3µ2
o

+
1
8

(2s2
W − 1)

(
log

2M̃+2
2 + M̃o2

3

3µ2
o

+ log
2M̃+2

2 + M̃o2
4

3µ2
o

)

− 1
4

log
M̃+2

2 + M̃o2
3 + M̃o2

4

3µ2
o

, (B.7)

and

g1 = −2
3

{
c2
bc

2
t

[
log

m̃2
t1 + 2m̃2

b1

3µ2
o

+ 4 log
2m̃2

t1 + m̃2
b1

3µ2
o

− 8
3

log
3m̃2

t1 + m̃2
b1

4µ2
o

− 2
3

log
m̃2

t1 + 3m̃2
b1

4µ2
o

+
4
3

log
m̃2

t1 + m̃2
b1

2µ2
o

]
+ s2

bc
2
t

[
log

m̃2
t1 + 2m̃2

b2

3µ2
o

+ 4 log
2m̃2

t1 + m̃2
b2

3µ2
o

− 8
3

log
3m̃2

t1 + m̃2
b2

4µ2
o

− 2
3

log
m̃2

t1 + 3m̃2
b2

4µ2
o

+
4
3

log
m̃2

t1 + m̃2
b2

2µ2
o

]
+ c2

bs
2
t

[
log

m̃2
t2 + 2m̃2

b1

3µ2
o

+ 4 log
2m̃2

t2 + m̃2
b1

3µ2
o

− 8
3

log
3m̃2

t2 + m̃2
b1

4µ2
o

− 2
3

log
m̃2

t2 + 3m̃2
b1

4µ2
o

+
4
3

log
m̃2

t2 + m̃2
b1

2µ2
o

]

+ s2
bs

2
t

[
log

m̃2
t2 + 2m̃2

b2

3µ2
o

+ 4 log
2m̃2

t2 + m̃2
b2

3µ2
o

− 8
3

log
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b1

+ m̃2
b2

4µ2
o

,

g6 = c2
bc

2
t

[
s4
W

3
log

m̃2
t1 + m̃2

b1

2µ2
o

+
s2
W

3
(3c2

t − 4s2
W) log

2m̃2
t1 + m̃2

b1

3µ2
o

+ 2s2
W

(
−c2

b

2
+

s2
W

3

)
log

m̃2
t1 + 2m̃2

b1

3µ2
o

+
1
9

(3c2
t − 4s2

W)(−3c2
b + 2s2

W) log
m̃2

t1 + m̃2
b1

2µ2
o

+ 4
(

c2
t

2
− 2

3
s2
W

)2

log
3m̃2

t1 + m̃2
b1

4µ2
o

+ 4
(

−c2
b

2
+

s2
W

3

)2

log
m̃2

t1 + 3m̃2
b1

4µ2
o

]

+ c2
bs

2
t

[
s4
W

3
log

m̃2
t2 + m̃2

b1

2µ2
o

+
s2
W

3
(3s2

t − 4s2
W) log

2m̃2
t2 + m̃2

b1

3µ2
o

+ 2s2
W

(
−c2

b

2
+

s2
W

3

)
log

m̃2
t2 + 2m̃2

b1

3µ2
o

+
1
9

(3s2
t − 4s2

W)(−3c2
b + 2s2

W) log
m̃2

t2 + m̃2
b1

2µ2
o

+ 4
(

s2
t

2
− 2

3
s2
W

)2

log
3m̃2

t2 + m̃2
b1

4µ2
o

+ 4
(

−c2
b

2
+

s2
W

3

)2

log
m̃2

t2 + 3m̃2
b1

4µ2
o

]

+ s2
bc

2
t

[
s4
W

3
log

m̃2
t1 + m̃2

b2

2µ2
o

+
s2
W

3
(3c2

t − 4s2
W) log

2m̃2
t1 + m̃2

b2

3µ2
o

+ 2s2
W

(
−s2

b

2
+

s2
W

3

)
log

m̃2
t1 + 2m̃2

b2

3µ2
o

+
1
9

(3c2
t − 4s2

W)(−3s2
b + 2s2

W) log
m̃2

t1 + m̃2
b2

2µ2
o

+ 4
(

c2
t

2
− 2

3
s2
W

)2

log
3m̃2

t1 + m̃2
b2

4µ2
o

+ 4
(

−s2
b

2
+

s2
W

3

)2

log
m̃2

t1 + 3m̃2
b2

4µ2
o

]

+ s2
bs

2
t

[
s4
W

3
log

m̃2
t2 + m̃2

b2

2µ2
o

+
s2
W

3
(3s2

t − 4s2
W) log

2m̃2
t2 + m̃2

b2

3µ2
o

+ 2s2
W

(
−s2

b

2
+

s2
W

3

)
log

m̃2
t2 + 2m̃2

b2

3µ2
o

+
1
9

(3s2
t − 4s2

W)(−3s2
b + 2s2

W) log
m̃2

t2 + m̃2
b2

2µ2
o

+ 4
(

s2
t

2
− 2

3
s2
W

)2

log
3m̃2

t2 + m̃2
b2

4µ2
o

+ 4
(

−s2
b

2
+

s2
W

3

)2

log
m̃2

t2 + 3m̃2
b2

4µ2
o

]

+ 4c2
bc

2
t s

2
t

(
−c2

b

2
+

s2
W

3

)
log

m̃2
t1 + m̃2

t2 + 2m̃2
b1

4µ2
o

+ 4s2
bc

2
t s

2
t

(
−s2

b

2
+

s2
W

3

)
log

m̃2
t1 + m̃2

t2 + 2m̃2
b2

4µ2
o

− 4c2
bc

2
t s

2
b

(
c2
t

2
− 2

3
s2
W

)
log

2m̃2
t1 + m̃2

b1
+ m̃2

b2

4µ2
o

− 4s2
bc

2
bs

2
t

(
s2

t

2
− 2

3
s2
W

)
log

2m̃2
t2 + m̃2

b1
+ m̃2

b2

4µ2
o

+
1
3
c2
bs

2
t c

2
t

[
6s2

W log
m̃2

t1 + m̃2
t2 + m̃2

b1

3µ2
o

+ (9c2
t − 8s2

W) log
2m̃2

t1 + m̃2
t2 + m̃2

b1

4µ2
o

+ (9s2
t − 8s2

W) log
m̃2

t1 + 2m̃2
t2 + m̃2

b1

4µ2
o

]

+
1
3
s2

bs
2
t c

2
t

[
6s2

W log
m̃2

t1 + m̃2
t2 + m̃2

b2

3µ2
o

+ (9c2
t − 8s2

W) log
2m̃2

t1 + m̃2
t2 + m̃2

b2

4µ2
o

+ (9s2
t − 8s2

W) log
m̃2

t1 + 2m̃2
t2 + m̃2

b2

4µ2
o

]

+
1
3
c2
bs

2
bc

2
t

[
−6s2

W log
m̃2

t1 + m̃2
b1

+ m̃2
b2

3µ2
o

+ (9c2
b − 4s2

W) log
m̃2

t1 + 2m̃2
b1

+ m̃2
b2

4µ2
o

+ (9s2
b − 4s2

W) log
m̃2

t1 + m̃2
b1

+ 2m̃2
b2

4µ2
o

]

+
1
3
c2
bs

2
bs

2
t

[
−6s2

W log
m̃2

t2 + m̃2
b1

+ m̃2
b2

3µ2
o
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+ (9c2
b − 4s2

W) log
m̃2

t2 + 2m̃2
b1

+ m̃2
b2

4µ2
o

+ (9s2
b − 4s2

W) log
m̃2

t2 + m̃2
b1

+ 2m̃2
b2

4µ2
o

]

− 4c2
bc

2
t s

2
bs

2
t log

m̃2
t1 + m̃2

t2 + m̃2
b1

+ m̃2
b2

4µ2
o

,

g7 =
3
2
c4
t log

m̃2
t1

µ2
o

+
3
2
s4

t log
m̃2

t2

µ2
o

+
3
2
c4
b log

m̃2
b1

µ2
o

+
3
2
s4

b log
m̃2

b2

µ2
o

+ 3s2
t c

2
t log

m̃2
t1 + m̃2

t2

2µ2
o

+ c4
t c

4
b log

m̃2
t1 + m̃2

b1
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o

+ s4
t c

4
b log

m̃2
t2 + m̃2

b1

2µ2
o

− 3c2
bc

4
t log

2m̃2
t1 + m̃2

b1
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o

− 3s4
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2
b log

2m̃2
t2 + m̃2
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o

− 3c2
t c

4
b log

m̃2
t1 + 2m̃2
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o

− 3s2
t c
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o
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t1 + m̃2
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t s
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b log

m̃2
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2µ2
o

− 3c4
t s
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b log
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t1 + m̃2
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o
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b log

m̃2
t2 + m̃2
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t2 + m̃2
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t2 + m̃2
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o
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+ m̃2
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o

− 6c2
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t log
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t1 + m̃2
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+ m̃2

b2

3µ2
o

− 6c2
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2
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t log
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t2 + m̃2
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+ m̃2
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3µ2
o
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t log
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t1 + m̃2

b1
+ m̃2
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2
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t2 + m̃2

b1
+ m̃2

b2

4µ2
o
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t s

4
b log
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t1 + m̃2

t2 + 2m̃2
b2
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o

+ 4c2
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2
t s

2
t log

m̃2
t1 + m̃2

t2 + m̃2
b1

+ m̃2
b2
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o
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g8 = c4
t c

4
b log

m̃2
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o

+ s4
t c

4
b log

m̃2
t2 + m̃2

b1
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o

+ s4
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t log
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t1 + m̃2

b2

2µ2
o

+ s4
t s

4
b log
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o
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t log
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o
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t2 + m̃2
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+ m̃2
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+ 4c2
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2
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t log
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+ m̃2
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o
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W log
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4
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4
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o
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(
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4
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o
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g11 = −4c4
W log
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o
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4
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(

log
3M̃+2

2 + M̃o2
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3M̃+2
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4
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o
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+ (2s2
W − 1) log
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4
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o
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4

log
M̃+2

2 + 2M̃o2
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4

4µ2
o
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4

log
M̃+2
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3 + 2M̃o2

4

4µ2
o

,

g12 = −8 log
M̃+2

1 + M̃o2
2

2µ2
o

− 1
2

log
M̃+2

2 + M̃o2
3

2µ2
o

− 1
2

log
M̃+2
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4
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− 3 log
2M̃+2
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.

(B.8)

Appendix C

This Appendix is devoted to present the exact results to
one loop for the three- and four-point sfermions contribu-
tions as well as the three-point inos contributions which
are denoted in the text by ∆ΓAW+W −

µνσ q̃ , ∆ΓZW+W −
µνσ q̃ , and

∆ΓAAW+W −
µνσλ q̃ , ∆ΓAZW+W −

µνσλ q̃ , ∆ΓZZW+W −
µνσλ q̃ , ∆ΓW+W −W+W −

µνσλ q̃

and ∆ΓAW+W −
µνσ χ̃ , ∆ΓZW+W −

µνσ χ̃ , respectively. The exact for-
mulae for the four-point inos contributions have also been
computed by us and are available upon request, but they
are not shown here due to their extreme lengths. The mo-
mentum assignments for the external gauge bosons are
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V µ
1 (−p)V ν

2 (−k)V σ
3 (−r) in the three-point functions,

∆ΓV1V2V3
µνσ , and V µ

1 (−p)V ν
2 (−k)V σ

3 (−r)V λ
4 (−t) in the four-

point functions, ∆ΓV1V2V3V4
µνσλ , and the convention is with all

the external momenta in-going. For brevity we here omit
the arguments in the Feynman integrals since the nota-
tion we have chosen for them is self-explanatory. Thus,
for instance,

Jabcd
µνσλ ≡ Jabcd

µνσλ(p, k, r, m̃fa , m̃fb
, m̃fc , m̃fd

),

Jabcd
λνσµ ≡ Jabcd

λνσµ(t, k, r, m̃fa
, m̃fb

, m̃fc
, m̃fd

),

and so on. In addition, a proper symmetrization over the
indices of identical external fields must be understood in
the following expressions.

(1) Three-point sfermions contributions.

∆ΓAW+W −
µνσ q̃ = −eg2 π2

2
Nc

(2π)4

×
∑

f̃

∑
a,b

[
(Q̂f )ab(Σf )baT ab

µ gνσ

+
1
3
(
(Σtb

f )ab(Σbt
f )baT ab

σ gµσ

+ (Σbt
f )ab(Σtb

f )baT ab
ν gµν

)]
−1

3

∑
a,b,c

[
(Q̂f )ab(Σtb

f )bc(Σbt
f )caT abc

µνσ

+(Q̂f )ab(Σbt
f )bc(Σtb

f )caT abc
µσν

+(Σtb
f )ab(Q̂f )bc(Σbt

f )caT abc
νµσ

+(Σbt
f )ab(Q̂f )bc(Σtb

f )caT abc
σµν

+(Σtb
f )ab(Σbt

f )bc(Q̂f )caT abc
νσµ

+(Σbt
f )ab(Σtb

f )ab(Q̂f )abT
abc
σνµ

]}
, (C.1)

∆ΓZW+W −
µνσ q̃ = −g3 π2

2cW

Nc

(2π)4

×
∑

f̃

∑
a,b

[
(Ĝf )ab(Σf )abT

ab
µ gνσ

− 1
3
s2
W
(
(Σtb

f )ab(Σbt
f )baT ab

σ gµσ

+ (Σbt
f )ab(Σtb

f )baT ab
ν gµν

)]
−1

3

∑
a,b,c

[
(Ĝf )ab(Σtb

f )bc(Σbt
f )caT abc

µνσ

+(Ĝf )ab(Σbt
f )bc(Σtb

f )caT abc
σµν

+(Σtb
f )ab(Ĝf )bc(Σbt

f )caT abc
νµσ

+(Σbt
f )ab(Ĝf )bc(Σtb

f )caT abc
σµν

+(Σtb
f )ab(Σbt

f )bc(Ĝf )caT abc
νσµ

+ (Σbt
f )ab(Σtb

f )bc(Ĝf )ca

]
T abc

σνµ

}
. (C.2)

(2) Four-point sfermions contributions.

∆ΓAAW+W −
µνσλ q̃ = e2g2π2 Nc

(2π)4

×
∑

f̃

1
2

∑
a,b

[(
(Q̂2

f )ab(Σf )ba

+ (Σf )ab(Q̂2
f )ba

)
gµνgσλJab

p+k

+
1
9
(
(Σtb

f )ab(Σbt
f )bagµσgνλJab

p+r

+ (Σbt
f )ab(Σtb

f )bagµλgνσJab
p+t

)]
−
∑
a,b,c

[
(Q̂f )ab(Q̂f )bc(Σf )caJabc

µν gσλ

+(Σtb
f )ab(Σbt

f )bc(Q̂2
f )caJabc

λσ gµν

+(Σbt
f )ab(Σtb

f )bc(Q̂2
f )caJabc

σλ gµν

+
1
3

(
(Q̂f )ab(Σbt

f )bc(Σtb
f )caJabc

µλ gνσ

+(Σtb
f )ab(Q̂f )bc(Σbt

f )caJabc
σν gµλ

+(Σbt
f )ab(Q̂f )bc(Σtb

f )caJabc
λν gµσ

+ (Q̂f )ab(Σtb
f )bc(Σbt

f )caJabc
µσ gνλ

)]
+

1
4

∑
a,b,c,d

[
(Q̂f )ab(Q̂f )bc

(
(Σtb

f )cd(Σbt
f )daJabcd

µνσλ

+ (Σbt
f )cd(Σtb

f )daJabcd
µνλσ

)
+(Q̂f )ab(Σtb

f )bc(Q̂f )cd(Σbt
f )daJabcd

µσνλ

+(Q̂f )ab(Σbt
f )bc(Q̂f )cd(Σtb

f )daJabcd
µλνσ

+(Q̂f )ab

(
(Σtb

f )bc(Σbt
f )cdJ

abcd
µσλν

+ (Σbt
f )bc(Σtb

f )cdJ
abcd
µλσν

)
(Q̂f )da

+(Σtb
f )ab(Q̂f )bc(Σbt

f )cd(Q̂f )daJabcd
σνλµ

+(Σbt
f )ab(Q̂f )bc(Σtb

f )cd(Q̂f )daJabcd
λνσµ

× ((Σtb
f )ab(Σbt

f )bcJ
abcd
σλµν

+ (Σbt
f )ab(Σtb

f )bcJ
abcd
λσµν

)
(Q̂f )cd(Q̂f )da

+(Σtb
f )ab(Q̂f )bc(Q̂f )cd(Σbt

f )daJabcd
σνµλ

+ (Σbt
f )ab(Q̂f )bc(Q̂f )cd(Σtb

f )daJabcd
λνµσ

]}
, (C.3)

∆ΓAZW+W −
µνσλ q̃ =

eg3

cW

π2

2
Nc

(2π)4

×
∑

f̃

∑
a,b

[(
(Q̂f Ĝf )ab(Σf )baJab

p+k

+ (Σf )ab(Q̂f Ĝf )baJab
r+t

)
gµνgσλ

−s2
W

18
((

(Σtb
f )ab(Σbt

f )baJab
p+r

+ (Σbt
f )ab(Σtb

f )baJab
k+r

)
gµσgνλ
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+
(
(Σtb

f )ab(Σbt
f )baJab

k+r

+ (Σbt
f )ab(Σtb

f )baJab
p+t

)
gµλgνσ

)]
−
∑
a,b,c

[(
(Q̂f )ab(Ĝf )bcJ

abc
µν gσλ

+ (Ĝf )ab(Q̂f )bcJ
abc
νµ gσλ

)
(Σf )ca

+2((Σtb
f )ab(Σbt

f )bcJ
abc
σλ gµν

+(Σbt
f )abJ

abc
λσ gνµ)(Σtb

f )bc)(Q̂f Ĝf )ba

−s2
W

3

(
(Q̂f )ab(Σbt

f )bc(Σtb
f )caJabc

µλ gνσ

+(Σbt
f )ab(Q̂f )bc(Σtb

f )caJabc
λµ gνσ

+(Q̂f )ab(Σtb
f )bc(Σbt

f )caJabc
µσ gνλ

+ (Σtb
f )ab(Q̂f )bc(Σbt

f )caJabc
σµ gνλ

)
+

1
3

(
(Ĝf )ab(Σtb

f )bc(Σbt
f )caJabc

νσ gµλ

+(Σtb
f )ab(Ĝf )bc(Σbt

f )caJabc
σν gµλ

+(Ĝf )ab(Σbt
f )bc(Σtb

f )caJabc
νλ gµσ

+ (Σbt
f )ab(Ĝf )bc(Σtb

f )caJabc
λν gµσ

)]
+

1
4

∑
a,b,c,d

[(
(Q̂f )ab(Ĝf )bcJ

abcd
µνσλ

+ (Ĝf )ab(Q̂f )bcJ
abcd
νµσλ

)
(Σtb

f )cd(Σbt
f )da

+
(

(Q̂f )ab(Ĝf )bcJ
abcd
µνλσ

+(Ĝf )ab(Q̂f )bcJ
abcd
νµλσ

)
(Σbt

f )cd(Σtb
f )da

+(Q̂f )ab(Σtb
f )bc(Ĝf )cd(Σbt

f )daJabcd
µσνλ

+(Ĝf )ab(Σtb
f )bc(Q̂f )cd(Σbt

f )daJabcd
νσµλ

+(Q̂f )ab(Σbt
f )bc(Ĝf )cd(Σtb

f )daJabcd
µλνσ

+(Ĝf )ab(Σbt
f )bc(Q̂f )cd(Σtb

f )daJabcd
νλµσ

+(Q̂f )ab

(
(Σtb

f )bc(Σbt
f )cdJ

abcd
µσλν

+ (Σbt
f )bc(Σtb

f )cdJ
abcd
µλσν

)
(Ĝf )da

+(Ĝf )ab

(
(Σtb

f )bc(Σbt
f )cdJ

abcd
νσλµ

+ (Σbt
f )bc(Σtb

f )cdJ
abcd
νλσµ

)
(Q̂f )da

+(Σtb
f )ab(Q̂f )bc(Σbt

f )cd(Ĝf )daJabcd
σµλν

+(Σtb
f )ab(Ĝf )bc(Σbt

f )cd(Q̂f )daJabcd
σνλµ

+(Σbt
f )ab(Q̂f )bc(Σtb

f )cd(Ĝf )daJabcd
λµσν

+(Σbt
f )ab(Ĝf )bc(Σtb

f )cd(Q̂f )daJabcd
λνσµ

+
(
(Σtb

f )ab(Σbt
f )bcJ

abcd
σλνµ

+ (Σbt
f )ab(Σtb

f )bcJ
abcd
λσνµ

)
(Q̂f )cd(Ĝf )da

+
(
(Σtb

f )ab(Σbt
f )bcJ

abcd
σλµν

+ (Σbt
f )ab(Σtb

f )bcJ
abcd
λσµν

)
(Ĝf )cd(Q̂f )da

+(Σtb
f )ab

(
(Q̂f )cd(Ĝf )daJabcd

σµνλ

+ (Ĝf )cd(Q̂f )daJabcd
σνµλ

)
(Σbt

f )da

+(Σbt
f )ab

(
(Q̂f )cd(Ĝf )daJabcd

λµνσ

+ (Ĝf )cd(Q̂f )daJabcd
λνµσ

)
(Σtb

f )da

]}
, (C.4)

∆ΓZZW+W −
µνσλ q̃ =

g4

c2
W

π2 Nc

(2π)4

×
∑

f̃

1
2

∑
a,b

[(
(Ĝ2

f )ab(Σf )ba

+ (Σf )ab(Ĝ2
f )ba

)
gµνgσλJab

p+k

+
s4
W

9
(
(Σtb

f )ab(Σbt
f )bagµσgνλJab

p+r

+ (Σbt
f )ab(Σtb

f )bagµλgνσJab
p+t

)]
−
∑
a,b,c

[
(Ĝf )ab(Ĝf )bc(Σf )caJabc

µν gσλ

+(Σtb
f )ab(Σbt

f )bc(Ĝ2
f )caJabc

λσ gµν

+(Σbt
f )ab(Σtb

f )bc(Ĝ2
f )caJabc

σλ gµν

−s2
W

3

(
(Ĝf )ab(Σbt

f )bc(Σtb
f )caJabc

µλ gνσ

+(Σtb
f )ab(Ĝf )bc(Σbt

f )caJabc
σν gµλ

+(Σbt
f )ab(Ĝf )bc(Σtb

f )caJabc
λν gµσ

+ (Ĝf )ab(Σtb
f )bc(Σbt

f )caJabc
µσ gνλ

)]
+

1
4

∑
a,b,c,d

[
(Ĝf )ab(Ĝf )bc

(
(Σtb

f )cd(Σbt
f )daJabcd

µνσλ

+ (Σbt
f )cd(Σtb

f )daJabcd
µνλσ

)
+(Ĝf )ab(Σtb

f )bc(Ĝf )cd(Σbt
f )daJabcd

µσνλ

+(Ĝf )ab(Σbt
f )bc(Ĝf )cd(Σtb

f )daJabcd
µλνσ

+(Ĝf )ab

(
(Σtb

f )bc(Σbt
f )cdJ

abcd
µσλν

+ (Σbt
f )bc(Σtb

f )cdJ
abcd
µλσν

)
(Ĝf )da

+(Σtb
f )ab(Ĝf )bc(Σbt

f )cd(Ĝf )daJabcd
σνλµ

+(Σbt
f )ab(Ĝf )bc(Σtb

f )cd(Ĝf )daJabcd
λνσµ

× ((Σtb
f )ab(Σbt

f )bcJ
abcd
σλµν

+ (Σbt
f )ab(Σtb

f )bcJ
abcd
λσµν

)
(Ĝf )cd(Ĝf )da

+(Σtb
f )ab(Ĝf )bc(Ĝf )cd(Σbt

f )daJabcd
σνµλ

+ (Σbt
f )ab(Ĝf )bc(Ĝf )cd(Σtb

f )daJabcd
λνµσ

]}
, (C.5)

∆ΓW+W −W+W −
µνσλ q̃ = g4π2 Nc

(2π)4∑
f̃

1
2

∑
a,b

[(Σf )ab(Σf )bagµνgσλ] Jab
p+k
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−
∑
a,b,c

[(
(Σtb

f )ab(Σbt
f )bcJ

abc
µν gσλ

+ (Σbt
f )ab(Σtb

f )bcJ
abc
νµ gσλ

)
(Σf )ca

]
+

1
4

∑
a,b,c,d

[
(Σtb

f )ab(Σtb
f )bc(Σbt

f )cd(Σbt
f )daJabcd

µσνλ

+(Σbt
f )ab(Σbt

f )bc(Σtb
f )cd(Σtb

f )daJabcd
λνσµ

+(Σtb
f )ab(Σbt

f )bc

(
(Σtb

f )cd(Σbt
f )daJabcd

µνσλ

+ (Σbt
f )cd(Σtb

f )daJabcd
µνλσ

)
+(Σbt

f )ab(Σtb
f )bc

(
(Σtb

f )cd(Σbt
f )daJabcd

νµσλ

+ (Σbt
f )cd(Σtb

f )daJabcd
νµλσ

)]}
. (C.6)

(3) Three-point inos contributions.

∆ΓAW+W −
µνσ χ̃ = − eg2

8π2

×
4∑

i=1

2∑
j,k=1

δjk

{
(OLij

O+
Lki

+ ORij
O+

Rki
)

[
T ijk

σµν +M̃+
j M̃+

k Iijk
σµν

]
+(OLij O

+
Rki

+ORij O
+
Lki

)[
M̃o

i M̃+
k Pijk

σµν + M̃o
i M̃+

j J ijk
σµν

]}
, (C.7)

∆ΓZW+W −
µνσ χ̃ =

g3

8π2

1
cW

×


4∑
i=1

2∑
j,k=1

[
(OLij O

′
Ljk

O+
Lki

+ORij O
′
Rjk

O+
Rki

)T ijk
σµν

+(OLij
O′

Rjk
O+

Rki
+ ORij

O′
Ljk

O+
Lki

)M̃o
i M̃+

j J ijk
σµν

+(OLij O
′
Rjk

O+
Lki

+ ORij O
′
Ljk

O+
Rki

)M̃+
j M̃+

k Iijk
σµν

+(OLij O
′
Ljk

O+
Rki

+ ORij O
′
Rjk

O+
Lki

)M̃o
i M̃+

k Pijk
σµν

]
+

4∑
i,j=1

2∑
k=1

[
(O′′

Lij
OLjk

O+
Lki

+O′′
Rij

ORjk
O+

Rki
)T ijk

µσν

+(O′′
Lij

ORjk
O+

Rki
+ O′′

Rij
OLjk

O+
Rki

)M̃o
i M̃o

j J ijk
µσν

+(O′′
Lij

ORjk
O+

Lki
+ O′′

Rij
OLjk

O+
Rki

)M̃o
j M̃+

k Iijk
µσν

+(O′′
Lij

OLjk
O+

Rki
+ O′′

Rij
ORjk

O+
Lki

)M̃o
i M̃+

k Pijk
µσν

]}
.

(C.8)

The integrals appearing in the above formulae are given
in terms of the standard one-loop integrals in Appendix A
and we refer once more to [16] in order to find the explicit
expressions of the coupling matrices.
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Garćıa, R.A. Jiménez, J. Solà, W. Hollik, Nucl. Phys. B
427, 53 (1994); J.A. Coarasa et al., Eur. Phys. J. C 2, 373
(1998); A. Djouadi et al., Eur. Phys. J. C 1, 149 (1998)

7. T. Inami, C.S. Lim, A. Yamada, Mod. Phys. Lett. A 7,
2789 (1992)

8. H.E. Haber, Higgs bosons in the minimal supersymmetric
model: The influence of radiative corrections (UC, Santa
Cruz). SCIPP-92/31, published in Perspectives on Higgs
physics (World Scientific Publ. 1992) p. 79

9. M. Carena, M. Quirós, C.E.M. Wagner, Nucl. Phys. B
461, 407 (1996)

10. T. Appelquist, J. Carazzone, Phys. Rev. D 11, 2856
(1975)

11. For an introduction to the subject of integration of heavy
fields and the computation of effective actions see, for in-
stance, A. Dobado et al., Effective Lagrangians for the
Standard Model (Springer-Verlag 1997)

12. M. Veltman, Act. Phys.Pol. B 8 475 (1977); Nucl. Phys. B
123, 89 (1977); D.R.T. Jones, M. Veltman, Nucl. Phys. B
19, 146 (1981); M. Chanowitz, M. Furman, I. Hinchliffe,
Phys. Lett. B 78, 285 (1978), Nucl. Phys. B 153, 402
(1979)

13. G. Lin, H. Steger, Y. Yao, Phys. Rev. D 49, 2414 (1994);
F. Feruglio, L. Maiani, A. Masiero, Nucl. Phys. B 387,
523 (1992)

14. T. Appelquist, C. Bernard, Phys. Rev. D 22, 200 (1980);
A.C. Longhitano, Nucl. Phys. B 188, 118 (1981); Phys.
Rev. D 22, 1166 (1980); M.J. Herrero, E.R. Morales, Nucl.
Phys. B 418, 431 (1994); Nucl. Phys. B 437, 319 (1995);
D. Espriu, J. Matias, Phys. Lett. B 341, 332 (1995);
S. Dittmaier, C. Grosse-Knetter, Phys. Rev. D 52, 7276
(1995); Nucl. Phys. B 459, 497 (1996)

15. G. Giavarini, C.P. Martin, F. Ruiz Ruiz, Nucl. Phys. B
381, 222 (1992)

16. A. Dobado, M.J. Herrero, S. Peñaranda, Eur. Phys. J. C
7, 313 (1999)

17. G. Passarino, M. Veltman, Nucl. Phys. B 160, 151 (1979)
18. A. Dobado, M.J. Herrero, S. Peñaranda, The Higgs sector
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