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Abstract. In the framework of the minimal supersymmetric standard model we compute the one-loop
effective action for the electroweak bosons obtained after integrating out the different sleptons, squarks,
neutralinos and charginos, and present the result in terms of the physical sparticle masses. In addition
we study the asymptotic behavior of the two-, three- and four-point Green’s functions with external
electroweak bosons in the limit where the physical sparticle masses are very large in comparison with
the electroweak scale. We find that in this limit all the effects produced by the supersymmetric particles
can either be absorbed in the standard model parameters and gauge bosons wave functions, or else they
are suppressed by inverse powers of the supersymmetric particle masses. This work, therefore, completes
the proof of decoupling of the heavy supersymmetric particles from the standard ones in the electroweak
bosons effective action and in the sense of the Appelquist—Carazzone theorem; we started this proof in a
previous work. From the point of view of effective field theories this work can be seen as a (partial) proof
that the SM can indeed be obtained from the MSSM as the quantum low-energy effective theory of the

latter when the SUSY spectra are much heavier than the electroweak scale.

1 Introduction

In spite of the enormous amount of experimental evidence
in favor of the standard model (SM), most of the physicists
consider it just as a low-energy manifestation of a more
fundamental theory. Among the possible extensions of the
SM one of the most popular is the so-called minimal su-
persymmetric standard model (MSSM) [1,2], which is the
simplest theory that can be built from a supersymmetric
version of the SM after the introduction of a minimal set of
soft breaking terms [3]. Those terms break the supersym-
metry (SUSY) of the original supersymmetric standard
model and give rise to contributions to the Higgs potential
that finally produce the appropriate spontaneous breaking
of the SU(2), x U(1)y electroweak gauge symmetry. Con-
sidering the MSSM as an interesting possibility motivated
by many theoretical reasons, it is a quite natural question
to ask: in what sense, if any, can the SM model be consid-
ered as a low-energy effective theory of the MSSM in the
case where the SUSY partners of the standard particles
are very heavy. In fact there are many partial indications
that the SM is the low-energy limit of the MSSM [4-9].
However, most of them are based on numerical estimates
and are obtained after taking some of the mass parame-
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ters appearing in the soft breaking terms numerically very
large.

In this work we would like to address the question of
getting the SM from the MSSM from a more formal field
theoretical point of view; in addition, we will work di-
rectly with the physical sparticle masses instead of using
the soft breaking parameters. In order to do that, we will
pay special attention to two esential points: First we will
define in a very precise way what we understand by a low-
energy effective theory. The definition that we will adopt
here is the one corresponding to the so-called decoupling
or Appelquist—Carazzone theorem [10]. Namely, a theory
with just light fields ¢ is considered as the low-energy ef-
fective theory of a larger theory with both heavy ¢ and
light ¢ fields if the effects of integrating out the heavy
fields ¢ on the Green’s functions can be reduced to renor-
malizations of the parameters of the effective theory, or
produce extra terms which are supressed by inverse powers
of the heavy ¢~> masses [11]. The second important point to
be taken into account is the precise way in which the large
sparticle mass limit is taken. This is essential since, due to
the divergences appearing in the loop integrals, large mass
limits and momentum integrations do not commute and
even the large mass limit for the various particles may not
commute among themselves. In this work we have chosen
to take the limit where the sparticle masses m; are much
larger than the electroweak boson masses and the external
momenta and, at the same time, we will assume that the
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differences among the sparticles masses are much smaller
than the sparticles masses themselves. These conditions
give rise to a precise definition of the large sparticle mass
regime, and make it possible to define, in an unambigu-
ous way, the resulting low-energy theory for the standard
particles. If this low-energy theory corresponds to the SM
according to the Appelquist—Carazzone definition, we will
say that the SUSY particles decouple from the SM. Notice
that the decoupling of the SUSY particles, in case it oc-
curs, is neither immediate nor trivial at all. This is because
the Appelquist—Carazzone theorem does not always apply
[12-14]. For example, it does not apply whenever we have
spontaneous symmetry breaking or chiral fermions [11].
This is just the case of the MSSM. Therefore the decou-
pling of the SUSY particles in the Appelquist—Carazzone
sense must be shown explicitly in this case.

Thus, our program is the following. We will start with
the MSSM sector involving the electroweak bosons for
which we want to study the possible decoupling of the
SUSY particles. Then we compute the Green’s functions
for the electroweak gauge bosons that are obtained by inte-
grating out the sleptons, squarks, neutralinos and charginos
at the one-loop level (the Higgs sector of the MSSM is con-
sidered in [18]). The next step is the analytical study of
the behavior of these Green’s functions in the asymptotic
regime of the large sparticle masses defined above. This
task will be much easier by using the so-called m-theorem
[15] as will be explained below. Finally, by comparison of
the obtained results with the tree level SM Green’s func-
tions for the electroweak bosons, we will be able to show
the decoupling of the considered SUSY particles according
to the Appelquist—Carazzone definition.

The above program was started by the authors in [16],
where the two-point functions for electroweak gauge bo-
sons and the S, T and U observables were considered.
Here we continue that program and consider the three-
and four-point functions for electroweak gauge bosons. We
use the same notations and conventions for the MSSM as
in our previous work. We also refer the reader to that work
for more details and, in particular, for a broad discussion
on the large sparticle mass limit. The present paper is
organized as follows: In Sect. 2 we review the definition
of the low-energy action for the electroweak bosons that
we presented in [16]. The results for the two-point func-
tions are summarized in Sect. 3. The three- and four-point
functions are obtained and discussed in Sects. 4 and 5, re-
spectively. These and our previous results are analyzed to-
gether in order to establish the applicability criterion for
the Appelquist—Carazzone theorem in the case studied.
Finally, in Sect. 6 we report the main conclusions of our
work. In Appendix A we define the one-loop integrals ap-
pearing in our computations by using the standard scalar
and tensor integrals [17] and give the asymptotic forms of
the last ones. Appendix B contains some operators and
functions which are used in this article to present the re-
sults for the three and four functions. Appendix C is de-
voted to a summary of the exact results to one loop for
the three- and four-point sfermion contributions and for
the three-point inos contributions.
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2 The low-energy effective action
for the electroweak bosons

In this section we describe our computation of the effec-
tive action for the electroweak bosons. It contains the two-,
three- and four-point Green’s functions and is obtained af-
ter the integration of the sfermions and inos, viz. charginos
and neutralinos of the MSSM [16].

In more generic words, our aim is to compute the ef-
fective action Ieg[¢] for the standard particles ¢ that is
defined through functional integration of all the sparticles
of the MSSM ¢. In a brief notation it is defined by

eilett[d] — /[dq’g}eiFMSSM[¢v¢~7]7 (1)

with

DNussm[o, ¢] = /dxﬁMSSM(éﬁ, ¢); de=d'z, (2

and Lygsy is the MSSM Lagrangian. The computation of
the effective action will be performed at the one-loop level
by using dimensional regularization, in an arbitrary R
gauge and will include the integration of all the sfermions
f (squarks q and sleptons l) neutralinos x° and charginos

. Our program starts, in particular, with the computa-
tion of the electroweak gauge boson effective action I.g
[V] (V = A, Z and WT) given by

eiFeff \4

- / (AR ][R ]

% [dxo]eiFMSSM[Vv]Fxf(Jr;)zo}

FMSSM[V fN )z+,)20] = /dx»CMSSM(‘/v fﬂ >~(+7 )NCO)

= / dzLO(V)
/dxﬁ (v, f /dm[, (V,X)

= L[V]+ LGV 1+ IRV, (4)

and £, £ > Ly, are the free Lagrangian and the interac-
tion Lagrangian of gauge bosons with sfermions and inos,
respectively. From now on we will follow closely the def-
initions, notations and conventions introduced in [16]. In
particular, we will use the compact notation:

O(x) =0u, O —y) =0ay, Al,y) = Auy,

TrA = tr / dzde, =Y / dz A%,
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and
t U
F=lP s feg 7= | 71
b1 T1
E ~
2 Y 2 (6)
X1
~+ ~o
= (’fi), =%
X2 X3
X9

The actions appearing in (4) can be written as

IHV, f1 = (FT AR ), (7)
where
Ap= AP 4 AR 4 4D,
(f*A(Z /dxdyf+A() fo i=0,1,2, (8)

and the operators are

AY = (o- M3);0,y,

fzy
AY = e (9,41Q; + 2QfAMaﬂ)w Say
% (0u21C; + 2@;-2#5“)90 Say
*jT(aﬂwﬂz +2X0PWF0") Gay + hoc.,
N 2 A 2.
%%
L, +yu— . €9 1y yitb
+ 59 EfWH w —‘rﬁyfAMW Ef
2 2
€g _ybt 9 Sw th
+ —Zyp A, WH-3b L CW 7 ey
\/iyf M f \/EnyW Iz f
_f,izwﬂ 5 9

where 52, = sin?fyw, & = cos®fw and yr = 1/3if f = ¢

oryf:fliff:li
Analogously, we have

1 =0 ~0 ==
SRAY + AR + ()T

IyVix) = 5 (AP +4)x")
+ (XA + (T AYR), (10)
where
AR = [ dedyieall, %,
(x +A D5 ) /da:dyx A+lyxy, 1=0,1,
KeAR ) = /dwdyxrAéﬂyf(y,
AN = [ sty A, (1)
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and the operators are
0) _ (: 70
AR, = (ip = 01°) b,
0 . ~
Ai;y = (1@ - M+) Ozy,
AN = L“’Zﬂ“ (O} PL + O Pr) — €A, | 4y,
w x
Ag){gxy = [QW,I’Y‘L (OLP, + ORPR)]x Ozy,
1
AEH%xy [QW;’}/“ (OfPL + OEPR)]QC 6951/ (12)

In the above expressions the coupling matrices Qf, G £
Ef}ﬂ E?t, Yy, and Oy, Og, Of,, Of, Of, Of, as well as the

mass matrices My, M? and M~ are defined in [16].
The effective action can be written as

etiff[V] IF [V]e ff[V]elpeXff[V] (13)

where
SAV] = [laf)ldf e (14)
ol V] — f[d)ﬁ][d):( J[dxe)el = VA, (15)

After a Gaussian integration on the complex sfermion
fields we find

[5[V] = iTrlog A7 = iTrlog[AY (1447 (AW 4+ AD))))
and by making the standard manipulations we get

3 1)k+1

rhvi=iye, &

(A (2
Tr[Gf(Af +Af Nk, (16)

-1
where the free sfermion propagator matrix G F= AL g

f
given by
G = d”q 4=D ,—ig(z— y)( —M) (17)
fay — (2 )D/”LO q flig o
with
(¢° — M7)
Qi 1 1 1 1
= diag —, —5, —5 =
¢ —mi ¢ —mi ? —mp " q? —my
if f =q
or
(4> — M7)~
q 1 1 1 1
= dla, s Ty =
g 2 ml% q2 q2 _ m72_1 q2 m72_2
it f=1,

and the sums over the three generations and the N, squarks
colors are implicit. Finally, if we keep just the terms that
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contribute to the two-, three- and four-point functions, the
effective action generated from sfermions integration can
be written as,

V] =i a2y 1 ()2
Feﬂ[v] = lTr(GfAf ) — 2Tr(GfAf. )

. i
—ITH(GAY G AY) + ST FADY,

i @2 AW A AW A 4(2)
- §Tr(GfAf" ) +1Tr(GfAf GfAf GfAf )

— TG ADY + O(V),

(18)
Clearly, we can identify the first and second terms in (18)
with the one-loop contributions from sfermions to the two-
point functions; the third and fourth terms with the con-
tributions to the three-point functions and the last three
terms are the corresponding contributions to the four-
point functions.

On the other hand the contributions to the electroweak
gauge bosons effective action coming from the neutralinos
and the charginos are given by Eq. 19 (on top of the page).

By performing first a standard Grassmann integration
on the chargino fields we find

e LxlV] = det(AL + AW)
X /[d)zo]ei%<>:<"[Afj’)+A§,1)—2A22(A$)+A$))’1A$3]>2")

Next we integrate over the neutralinos which are Majorana
fermion fields and find

TVl = det(AY) + AD)

1
2

x |det(70[AL) + AL — 2401 (A + a1 AN

so that the effective action can be written as
X [V] = —iTrlog(AY) + A)
i o
— S Trlog(10[A” + AL —24{2 (A

+ AT AD)) 4, (20)

where the index A means that the corresponding operator
must be properly antisymmetrized.
Now, by introducing the chargino propagator ki =

-1
Agf) which is given by the matrix

kij — qu
+zy (QW)D

b g L)

ol %elV] — / [ARH[ARH][AR?] x 13 XA +ADIR)+HEH AP +ADIT )+ R AL+ ALY
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(19)

—1
and the neutralino propagator k, = A(()O) which is given
by the matrix

D
kéjzyz/ d7q
(2m)P

< pb-PeE) (f — N,

ij 7

1,7 =1,2,3,4, (22)

we can write the total inos contribution to the effective
action as

L5IV] = 5 Te(ky AD)? + L Tr(k, AL )

+iTr(ko ANk, AW — %Tr(k+A$))3

— iTr(ko ANk AR, AD)
= Tk, AR AL AL) = STe(k, A

2
+ ek ADY + Tk AL (e ALY B AL)

i 2
+ 5 Trlko AL R AL))

+ %Tr(koAgllk+ASrlgkﬂoASrl())T%kJﬂoAg?T%)

+iTr (ko A ko ANk, AWK, AW)
ATr((koAS) 2k, A Ky AL))

+ éTr(k:oAgl))‘l L O(VD).
In the above formula the three first terms correspond with
the one-loop contributions to the two-point functions in
the inos sector; the following four terms with the contribu-
tions to the three-point functions and the last seven terms
are the corresponding contributions to the four-point func-
tions.
Thus the total effective action for the two-, three-, and
four-point Green’s functions is given by

(23)

Ta[V] = L[V] + TV + T (V] (24)

where I,[V] is the effective action at tree level and I ef;f V]

and I;[V] are the effective actions generated from sferm-
ions and inos, respectively, which have been given in (18)
and (23).

The Feynman diagrams corresponding to the different
terms appearing in the above equations (18) and (23) can
be found in Fig. 1.

Finally, the effective action can generically be written

as a function of the n point Green’s functions, F/K}_‘fzp‘“vn,
as

1
Leg[V] :Zm/dfl'“dxn

X DVVE Vo (g -, )W () Ve (22) - VP (),

(25)



A. Dobado et al.: The SM as the quantum low-energy effective theory of the MSSM 677
] f
i A
o~ \ !
/ N N
rvx’ruxJ\ 2% 2 W
1 N o oV Vi Vs
f
; J
s oY V-
f {~ : V? //’k\\ 2
0% _aA f v f\MJ\
Vi N ! Vi \__./
TN - Vs
f (@ ~ 3
V: f
f\bu\Vl f Vv - f L 5
I\\ V3 Vi - V3 "_1_4__(\‘/\"
1 \ I -
A ) AR ¥
A AP -
~o” Y vy, L ot W
(a)
¥ i v Vs
Xy Ax
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"1 - V2 ol he O Fig. 1. Generic Feynman diagrams corresponding
X V, X \ to the one-loop contributions to the two, three and

where Cy,v,...y;, are the appropriate combinatorial fac-
tors. For practical purposes, it is useful to work in the
momentum space where the effective action is given by

1 - -
LglV] =Y ST /dk1~--dkn(27r)46(2f:1ki)
X TWY2 Vo (ks - ) VI (=)
X VvQV(ka)Vnp(fkn)a (26>

where dk = d*k/(27)* and the momentum-space Green’s
functions I” XZ}YQP”'V" (k1ko - - - ky) are the Fourier transforms

of the ordinary space-time Green’s functions I ,K}Y"‘p'“v"
(z122 -+ 20),

(2m) (D k) D5y (s, oK) =

/d:cldxg e dxne*iEizlkmFlXﬁ_‘ﬁ;”v’b (z1, 20, -, 2p).

Our convention for the Fourier transform of the gauge bo-
sons fields V*(k) is

VE(k) = / dze PV E ().

Finally, we recall that in extracting the Green’s functions
from the effective action, the proper symmetrization over
the indices and momenta corresponding to the identical
external fields must be performed.

four-point functions. a With sfermions in the loops.
b With charginos and neutralinos in the loops

3 Decoupling in the two-point functions

In this section and in the following we study the asymp-
totic behavior of the above effective action and the corre-
sponding Green’s functions in the regime where the spar-
ticle masses are large. By a large sparticle mass limit we
generically mean m? > M2y, k?, where 7, denotes any of
the physical sparticle masses, Mgw any of the electroweak
masses (Myz, My, my,...) and k denotes any of the ex-
ternal momenta. As for the analytical computation, when-
ever we refer to the large sparticle mass limit of a given
one-loop Feynman integral, we mean the asymptotic limit
m; — oo for all sparticle masses that are involved in that
integral. However, we would like to emphasize that this
asymptotic limit is not fully defined unless one specifies
in addition the relative sizes of the involved masses. In
other words, the result may depend, in general, on the
particular way this asymptotic limit is taken. Here we
consider the asymptotic limit ﬁﬁ ; — oo, while keeping
|(m7 —m?)/(mi +m3)| < 1 for all i # j in each MSSM
sector. That is, we consider the plausible situation where
there is a big gap between the SUSY particles and their
standard partners, but the differences among the SUSY
masses belonging to the same sector are not large. No-
tice that the other possibility where the sparticle masses
are large as compared to the electroweak scale but their
squared mass differences are of the same order as their
sums, namely |7 —m?| ~ |[m7 4 m3| for all i # j in each
MSSM sector, is not studied in this paper. It corresponds

to |(m3—m§)/(m3+m§)| ~ O(1) and therefore, in contrast
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with the previous case, this ratio cannot be considered as
a good expansion parameter. We have explained in [16]
how to deal with these two different expansions and how
they can be interpreted in terms of the MSSM parame-
ters. Of course, the demonstration of decoupling for the
second possibility should be considered separately since
it requires a different asymptotic expansion of the loop
integrals than the ones presented in this work.

Let us first concentrate on the two-point functions.
Details of this analysis can be found in [16]. We just sum-
marize here the main results.

By working in the momentum space and by follow-
ing the standard techniques it is possible to compute the
two-point functions coming from the integration of the
sfermions and the inos according to the discussion intro-
duced in the previous section. The corresponding part of
the effective action can be written as

Le[V]ig = o / dpdké(p + k)

x (2m) L (k)VH (=p) Vs (k). (27)
where Cy,v, = n and n denotes the number of external
gauge bosons that are identical.

The exact results for each contribution to the two-
point Green’s functions in momentum space and in a R
covariant gauge, FfVA(k),nyZ(k), Flﬁz(k) and Iy W (k),
can be found in [16].

As was explained in the introduction and was men-
tioned at the begining of this section, we are interested in
the asymptotic behavior of the Green’s functions for very
heavy SUSY masses. Thus we need to compute not just the
exact results to one loop of the Green’s functions but their
asymptotic expressions valid in that limit. In order to get
these we have analyzed the integrals by means of the so-
called m-theorem [15]. This theorem provides a powerful
technique to study the asymptotic behavior of Feynman
integrals in the limit where some of the masses are large.
Notice that this is non-trivial since some of these integrals
are divergent, in which case the interchange of the integral
with the large mass limit is not allowed. Thus, one should
first compute the integrals with some regularization pro-
cedure as, for instance, dimensional regularization, and
at the end take the large mass limit. Instead of this di-
rect way it is also possible to proceed as follows: First,
one rearranges the integrand through algebraic manipu-
lations to separate the Feynman integral into a divergent
part, which can be evaluated exactly using the standard
techniques of dimensional regularization, and a convergent
part that satisfies the requirements demanded by the m-
theorem and therefore, goes to zero in the infinite mass
limit. By means of this procedure the correct asymptotic
behavior of the integrals is guaranteed. This is the method
we will follow in this work. Some examples of the computa-
tion of the Feynman integrals by means of the m-theorem
as well as details of this theorem are given in [16]. The
results for the one-loop integrals in the large mass limit
that appear in the two-point functions are also presented
in that paper.
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By following the above described method we have ob-
tained the asymptotic behavior of the two-point functions
in the large sparticle mass limit, which for the sfermion
and inos sectors read, respectively, as follows:

m3, > Mpy, k?,

[, — g, | < |mf, + | Vi, g, (28)
and
M > My, k2,
|MP — M| < |M7 + M| Vi, j, (29)

where 7y, denotes the mass of the sfermion f;, M; the
mass of the ino i, Mgw is any of the electroweak masses
and k is any of the external momenta. The results of the
two-point functions I'Y1"> (k) to one loop are given by

Viva + AFV1V2

nv pro

L™ =TI (30)
where the tree level functions FOL/;W

gauge are

in a R¢ covariant
Loy (k) = (M3 — k) gy

1
+ (1 - ) kuk, (V= 2,W),
\%

1
Lot = —K2gu + <1 - €A> kuk,,

LoV =0 if Vi # Vh, (31)
and the contributions from sfermions and inos, AFXL}VZ,
can be written as
ALYz (k) = VY2 (k)guw + RV (K)kuky.  (32)
We have shown in [16] that the asymptotic results are
of the generic form

2V1V2(k) — EV1V2 +2V1V2k2

(0) @)
k*  Am?
+0( g as)

RYIVa(k) = RYY: 4.0 <’“2

Am?
i ) ()

Xm?2’ Xm?

where Z(‘?)V"‘ and REG)VQ contain the divergent contribu-

tions, namely the O(1/e€) terms in dimensional regular-
ization, and are functions of the large SUSY masses but
are k independent. Furthermore, we find RX)])VQ = —E(‘?)VQ

in this asymptotic regime. On the other hand, the E(‘gl)v"’

functions turn out to be finite and k independent, and
they vanish in the asymptotic limit of infinite sparticle
masses. Here and in the following the terms denoted by
O (K*/(Zm?), (Am?)/(Xm?)) are suppressed by inverse
powers of the large SUSY masses and vanish in the asymp-
totic regime. The large mass parameter of the asymptotic
expansion in the two-point functions is always taken to
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be the sum of the various squared masses involved in the
corresponding loop diagram which we here generically de-
note by Xm?2. On the other hand, Am? represents the
various corresponding squared mass differences which in
our asymptotic limit are always smaller than the corre-
sponding sum.

These results can alternatively be expressed through
the transverse and lon§itudinal parts of the two-point func-
tions, E¥1 V2 and EI‘J/I 2. which are defined by

‘)

According to this definition, the asymptotic results whose
explicit expressions are given in [16] can be written, in a
generic form, as

I (k) = Topn " (k)
k.k
+ 2VV2 (k) (g,“, - 22
kuk,
k 22 .

+ 02 (k) (34)

2k = Zi+ 2

k2 Am?
ViVa .2

(11) *k +O(2m2’2m2>’
k2 Aﬁ”ﬂ)

ELYIVQ (k) = 2V1V2 + o (ZmQ? 2m2

(0) (35)
Notice that (£7"2 — ZY1V2) o k2. This result together
with the explicit form of the Z(‘gl)VQ and 2(‘;1)‘/2 functions
demonstrate that the decoupling indeed occurs in the two-
point functions.

In order to illustrate the above result with one partic-
ular example, we choose to present here the explicit ex-
pressions for the X4 contributions. The transverse con-
tributions are [16]

e? 1

77
X7 (k)d = Nc@%

1 _o NP
< X {5 [dstnond i) + istnnd, i)

q

679
Loo,izo -9
X Z —§cTsTh(mTl,m72)
l
1 1 m2
+ -k? { (AE —log ”>
37 |4 I
—2 2 ~ 2
(o) (o)
2 2 52
+ <—2T+8W2> <Ae—log ;2>
1, m2, +1m2
+ 257 <A6 1 12#% 2 ) (37)
2
1
22k, — __c
- (k)x 1672 s
1 1o ~roy 2 M§2+M£2

1 2 M2
+ 51{;2 [4 (s — 1) <A€ —log ,ulg )
, 1\’ M2
+4(sw—2> A, —log .2
MOQ MOQ
+<A€—log3 +2 4 >]}
245

The results for the corresponding longitudinal parts can,
generically, be written as

(38)

77 (k) =
[Term in 2%7 (k) that is k independent] = E(ZO)Z. (39)

In the above equations ¢y = cosfly, sy = sinfy, with 0 be-
ing the mixing angle in the f sector, and the sum in g and
[ running over the three squark and slepton generations,
respectively. Besides,
2

Ac=— =7 tlog(dm) , e=4-D;  (40)
€
o is the usual mass scale appearing in dimensional regu-
larization, and the function h(m?%,m32) is given by

2m?
h(m?2,m2) = m?log ——L _
(m%, m3) = mjlog PR
2m2
2 2

I 41

+ mjlog pp— (41)

which behaves as

h(mf, m3) —

o[z ofekz)]

my —my
mi+m mi + m;

2

in the asymptotic limit. The explicit expressions for the
other two-point functions, I'*4, "% and I''W can be
found in [16].
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As can be seen from our total results [16], all the
non-vanishing contributions to the two-point functions in
the asymptotic region are contained in E(‘?)VQ and R1V2:

0
we have RX)])Vz = —3"1V2 Therefore, they can be ab-

sorbed into a redefinition of the SM relevant parameters,
M, Mz and e and the gauge bosons wave functions. In
consequence, the decoupling of squarks, sleptons, charginos
and neutralinos in the two-point functions do indeed oc-
cur.

4 The three-point functions

In this section we present the three-point functions for
the electroweak gauge bosons to one loop and analyze the
large mass limit of the SUSY particles.

In order to get the explicit expressions for these func-
tions one must work out the corresponding functional traces
in the formulae (18) and (23). For this purpose one must
substitute all the operators and propagators in these for-
mulae, and compute all the appearing Dirac traces. The
functional traces also involve performing the sum in the
corresponding matrix indices, the sum over the various
types of sfermions and the sum in color indices in the case
of squarks. We would like to mention that, in this paper,
we have chosen to work in the momentum space, which
turns out to considerably simplify the calculation of the
functional traces.

By following the same procedure as in Sect. 3 we have
obtained the result for the effective action of the three-
point functions coming from the integration of sfermions
and inos. Generically, the corresponding part of the effec-
tive action can be written as

1 ~
FQH[V] Bl =~ /dﬁdkdfé(p +k+ T’)

CVl VaVs
x (2m) T2V (—p) Vi (=k)VS (=), (43)
where Cy,v,v, = n! and n is the number of external gauge
bosons that are identical.

4.1 Sfermions contributions

For simplicity, we show here the results in a general and
compact form and leave the details for the appendices.
Once the appropiate traces have been computed, the cor-
responding effective action for the three-point functions
coming from the sfermions integration can be expressed
as

rhv), = —=° / dpdkdid(p + k + 1)

(3

> (6

a,b,c

;3]

X

Ol” OQWT)baTa (pa mfa7mfb)gllo'

f

H ab )bc(olg)ca

W =

T;illljg'(p7k’mfa7mfb7ﬁlfc)>’
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where, similarly to the two-point functions, the sum in f
runs over the three generations and over the N, colors in
the case of squarks, the indices a, b and ¢ run from one
to four corresponding to the four entries of the sfermions
column matrix f . Tgb and Tﬁ% are the one-loop integrals
that are defined as functions of the standard integrals in
Appendix A, and O and O2*” are the operators collected
in Appendix B. It is important to emphasize that this
formula is exact to one loop.

By substituting the definition of the operators involved
in the above equation, we have obtained all the contribu-
tions to the three-point functions to one loop. In partic-
ular, the exact results for AWTW = and ZW+TW—
given in Appendix C.

Furthermore, as we are interested in the large mass
limit of the SUSY particles, we need the asymptotic ex-
pressions for the integrals appearing in the formula (44),
which we have obtained by means of the m-theorem. The
results of the these integrals in that limit can be easily
read from (A.3) and (A.4), respectively, and by using the
corresponding asymptotic expressions for the scalar and
tensor integrals that have been presented in Appendix A.
By substituting these asymptotic results into (44), we fi-
nally get

2 ~
- % / dpdkdis(p + k + 1) (45)

X

Z Z(Ol#)ab(ély)bc(olg)ca

f a,b,c
m2, +m2, +m?2
fa fb fe
(Ae - log 3 2 ) L,uuo} )

where L,,,, denotes the tensor appearing in the tree level
vertex defined by

X

Lo = [(k = D)oguw + (r = k)ugve + (p = 1)vguo] - (46)

Therefore, the asymptotic result in (45) is proportional
to the tree level tensor L,,,. Thus, we can already con-
clude at this point that the sfermions decouple in the
three-point functions since this correction being propor-
tional to L,,, can be absorbed into redefinitions of the
SM parameters and the external gauge bosons wave func-
tions. Notice that the two kind of one-loop Feynman in-
tegrals that appear in the three-point functions, T“b nd

T“BU, generically involve two and three different Spartl—
Cle masses, respectively, which in our limit are consid-
ered to be large. However, in order to implement the large
SUSY mass limit, one must choose a proper combination
of masses such that there is just one large mass parameter
while the others are kept small. Our choice for the large
mass parameter is always the sum of the various squared
SUSY masses involved in the loop integral. The rest of the
mass parameters can be expressed in terms of the sparticle
squared mass differences which in our approximation are
small as compared to their sum as is shown in (28). The
result in (45) has corrections, not explicitly shown, which
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are suppressed by inverse powers of these large SUSY mass
sums, and therefore they vanish in our asymptotic limit.
For completeness, we here also present the explicit contri-
butions to the three-point Green’s functions with specific
external gauge bosons, I XI}XQVJ Our results can be pre-
sented in the form

ViVaVs
1—‘,11,1/0'

_ F0V1V2V3 —|—AFV1V2V3

- nro nro ’

(47)

where the momenta assignments are V/*(—p), V& (—k) and

VZ(—r) and the tree level contributions are
R -
Lohe W =Ly, Toie ™ =gewbuve.  (48)

In order to get the sfermion contributions, one must
substitute all the operators that appear in (45), perform
the corresponding sums and after a rather lengthy calcu-
lation, the following results are obtained:

2
AW eg® N.
Aliwe "a = 15y e
X E { A +f1 mtlamfzvmgmmgg)}
2 ~ 2
p°  Am
F O =— 49
+ luve |: (EﬁlZ’ Eﬁl2>:| ) ( )
3
aw+w—- _  9° Ne
AFHVU g — = pnro

1672 6ew
x> {ew’ A+ fo(mf,,mi, i, mi,) }
q

2 =2
+ FZ/LVU |:O <Z%)~2’ ATZ>:| ’
m*" Xm

where, generically, p denotes any of the external momenta,
Am? denotes the various squared mass differences and
Xm? denotes the corresponding large mass parameter
which in our case is always a sum of squared SUSY masses.
The functions Fj,,,(i = 1,2) are finite and they go to
zero in the limit of 7, ; — oo(Vi,j) with /] — mj| <
|m?+m3|. The functions f1 o(m7, , m7,, My, ;) are given
explicitly in Appendix B. These functions are also finite
but different from zero in the large mass limit, and there-
fore they contain all the potentially non-decoupling effects
of the three-point functions. More specifically, these effects
are given by the logarithmic dependence on the large mass
parameter of these two functions. Generically, these can

be written as
=2 =2
Z)vo(5).
I 2m

(51)
As we have mentioned before, the corrections Al are pro-
portional to the tree level vertex L,,,, and therefore the
potentially non-decoupling effects in the three-point func-
tions can be absorbed into redefinitions of the coupling
constants and wave functions renormalization. Therefore,
this is an explicit proof of decoupling of squarks in the

AWtw™ ZWTW™
I and 1777 Green’s functions.

(50)

2 -2 -2 -9
f1,2(mg,,my,, My, ,my,) = O (log
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We would like to point out that the other three-point
Green’s functions are exactly zero in our limit, as was ex-
pected. As a check of the previous functional computation
we have also calculated all these three-point functions by
diagramatic methods and we obtained the same results.

Similar results are obtained for the sleptons sector
doing the corresponding replacements: ¢ — l~, N. — 1,
My, —> My, My, — Mgy, Mp, —> Mpy, ¢¢ — 1, 54 = 0,
e — Cry Sp— Sy and yp =1/3 - yp = —1.

4.2 Inos contributions

To compute the inos contributions to the three-point func-
tions, one must work out the functional traces given in
(23). This leads to an expression containing several com-
binations of momenta, operators and Dirac traces corre-
sponding to specific external gauge bosons V; V5 V3 that we
give explicitly in Appendix B.

The result for the effective action coming from the in-
tegration of inos in the three-point functions can be ex-
pressed in a compact form as

rx [V] /dpdkdr(27r) op+k+r)

1 o
x/dq 3 Z FIR(OMGE M M)

i,7,k=1
x {aala} (G- OV 5T + gt M NI (G- O)f
ngz+ ~l:r(G : O)2+++ +

4 2
30> FoE@a, ar 1) { e adal (G 0)5T
2 2

o5 N V(G- 0)3+

g MIME (G- O)7 T + g8 MM (G- 0)57
b g NINL (G 0)5 )
4 2
+ >0 S FEa, g, 35 {arafad (G 0554
4,j=1k=1
+gi MY M (G- 0)]”" + g8 MY M (G- 0)5°"
+@WMm0ﬁﬂ
+ Z FUR(MP, M, M,
i,5,k=1
+qi M MR(G - 0)7° + g5 MY MY (G - 0)5

M) {q1 4543 (G - 0){o5

N ATHCRIA Y (52)

where (G - O) denotes the various products of traces and
operators that are collected in Appendix B. The super-
scripts in (G - O) correspond with the type of sparticles
appearing in the loop or, equivalently, in the internal Feyn-
man’s propagators, and the subscripts denote the corre-
sponding momenta to be contracted with the results of
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the traces in each case. For example, in (G - O)E?r, the

superscripts +++ denote the three charginos in the loop
and the subscripts 123 mean that the traces must be con-
tracted with the ¢, ¢2 and g3 momenta. The indices ¢, j, k
in the above formula vary as i, j,k = 1,2 if they refer to
charginos and as ¢,j,k = 1,...,4 if they refer to neutrali-
nos, and the generic function ]—'ijk(Mi,Mj,Mk) is given
by

. - 1
(2 - 32 [022 - 372) [ 52 - 127

where

Gn=¢ @=q+p, @G=qt+ptk (53)

As we have explained above, the next step is to com-
pute each Dirac trace appearing in the expression (52),
substitute the operators, perform the corresponding traces
and finally to extract the various three-point functions
with specific external legs which we do not present en-
tirely here for brevity. We have computed each contribu-
tion to these functions and have checked that the results
for ATAAA AP AAZ ATA2Z and AI'?%Z are finite as was
expected.

The exact results to one loop for the AWTW = and
ZW W~ three-point functions are collected in Appendix
C.

In order to get the assymptotic limit of the Green’s
functions in (52), (C.7) and (C.8), we use the results of the
one-loop integrals in the large mass limit that are collected
in Appendix A and the values for the coupling matrices
Or R, 0 g and Of i in the limit of large neutralino and
chargino masses that can be found in [16]. By substituting
all these results into (52) we find the inos contributions to
the three-point part of the effective action which can be
written as

4 ~
IVl = —§w2 / dpdkdid(p + k + 1)

X Z{;(Ol+02+04+06+08)

.9,k

1 - A N pro R
+6012u_1/0 + (016 + 018) + O22ul/a}

urvo

ijk

ijk ijk ijk

X (Ae — log

where L, represents the tree level tensor defined in (46)

(54)

M? + M? + M}
T Uro

and the operators OAZ”,;’ can be found in Appendix B. No-
tice that the indices ijk vary in accordance with the inos
particles appearing in the loops, i.e, 7,5,k = 1,2 if they
refer to charginos and 4,5,k = 1,---,4 if they refer to
neutralinos.

The fact that this result is proportional again to the
tree level tensor L, enables us to conclude that the inos
also decouple in the three-point functions. For complete-
ness we have worked out, in detail, the explicit expressions
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for the three-point functions with specific external gauge
bosons that are different from zero in our limit. By using
the same notation as in Sect. 4.1 we have obtained,

eg? 4
1672317

3 e
><{2AE—|—f3(M1+,M2+7M?,M207M:§),M2)}

2 52
p°  Am
F: 0 —_—
+ 3uvo |: <2m27 EﬁLQ):| )
34
Arzwwe o 9 Ay
pre X 1672 3ew

AWTW = _
AF,M; %

(55)

3 U
| S+ Ot g 10, 389, 889, 0 |

2 ~2
+F4[Ll/l7 |:O <§§)~27 ATZ>:| )

m? Xm
where the functions F;,,, (i = 3,4) are finite and we have
proved explicitly that they go to zero in our asymptotic
limit. On the other hand, the functions f;(M;", M, MY,
MY, M9, MQ)(i = 3,4) are finite and different from zero
in the large mass limit, and therefore they contain all the
potentially non-decoupling effects of the three-point func-
tions. Their explicit expressions can be found in Appendix
B. However, as we have mentioned above, the corrections
AT given in (55) and (56), are also proportional to the tree
level tensor L, and therefore, the mentioned potentially
non-decoupling effects can be absorbed into redefenitions
of the SM parameters and the gauge bosons wave func-
tions. The results in (55) and (56) demostrate explicitly,
therefore, the decoupling of the inos in the I’ AWTW™ and
IZW W™ functions.

In addition, we have checked that after the proper sym-
metrization over the identical external fields, the AI'4A44,
ATAAZ ATA2Z and AI'?%4Z contributions are exactly
zero in our limit as was expected since there are no cor-
responding tree level vertices. As a check of the previous
functional computation we have also calculated all these
three-point functions by diagrammatic methods and we
obtained the same results.

(56)

5 The four-point functions and higher

In this section we compute the four-point Green’s func-
tions with external gauge bosons, A, Z, W+, W~ at one-
loop level. At the end of this section we also discuss the
case of higher-point functions, which completes our anal-
ysis of decoupling of the SUSY particles.

Let us begin by writing the expression of the corre-
sponding part of the effective action as a function of the
four-point functions F/Y;Xivaw,

1

Tl = Grvavns
1vV2V3Vva

(57)
X / dpdkdidid(p + k + r + t)(27)*

% FV1V2V3V4Vlﬂ(_p)‘/ZV(_]g)‘/;(—T)Vr(_t),

Uro
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where Cy,v,v,v, is the appropriate combinatorial factor
for the number of identical external gauge bosons.

By working in the momentum space and by following
the same techniques described in the previous sections one
computes the four-point functions coming from the inte-
grations of sfermions and inos. Clearly, this computation
involves working out again the corresponding functional
traces given in (18) and (23).

5.1 Sfermions contributions

The resulting effective action for four-point functions that
are generated from sfermions integration can be summa-
rized in the following expression:

Fefff[v] 4 = 72 /dﬁdl%dfdfé(p +h4r+t)

X Z Z OQ#V)ab(OAQUA)baguugo/\
a,b

X Z+k(p+k my,,mf,)
_ Z Olp, Olu) (OAQU)\)cagg)\

a,b,c

Jabc(pv k mfa’mfb’mfc)

_|_ Z Ol,u 01 )bc(Ol )cd(ol)\)

a,b,c,d

X JESZdA(pv k,r, mfa’mfb7mfc) )

(58)

where the indices a, b, ¢ and d run from one to four corre-
sponding to the four entries of the sfermion matrix in (6)
and the integrals and operators appearing in this formula
are the ones given in Appendix A and B, respectively.
From this formula we have obtained the sfermion con-
tributions to the four-point functions, I V;;/f\ve’v“ In the
case of the squarks we have presented the exact results for
the ATAMW . ATZEW . ALY
AF W+W WIWT iy Appendix C. We have checked explic-
1t1y 1n adgltlon that the other four-point functions not
shown in this Appendix are finite as corresponds to the
Green’s functions that do not have tree level contributions.
In order to get the asymptotic expressions for the effec-
tive action given in (58), one proceeds as in the previous
sections. Notice that for the sfermions contributions to the
four-point part of the effective action it is not possible to
write, directly, an expression equivalent to the one given
n (45). In the first step after substituting just the asymp-
totic results of the integrals in (58), one does not obtain
yet a result proportional to the tree level vertex for the
effective action, and one could think that it may be some
non-decoupling effect in the Appelquist—Carazzone sense.
However, this is not the case, and in order to conclude
anything about the decoupling of sfermions in the four-
point functions one needs to go a step further and to com-
pute the different contributions to the four-point Green’s

and
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functions, which involve at the same time performing the
sums in the corresponding matrix indices and over the
various types of sfermions. Finally, after performing these
sums one gets the results for the sfermions contributions
to the four-point functions that indeed show decoupling
since they turn out to be proportional to the correspond-
ing tree level contribution.

Analogously to the previous section, we write our re-
sults as

Lol = Topod* ™ + AR (59)
where the momenta assignments are V{'(—p), V§'(—k),

V& (—r) and V*(—t), and the different contributions to
the effective action at tree level are defined by

TaW I W™ — 28,5,
Fé‘}LiV,V;W_ = —g*swewBon,
TR = e
LW = 28, (60)
with
Buvor = [20,090x = Guogur — Gurgvo) - (61)

The results for the squark contributions to the four-point
functions that are different from zero are the following:

N e2g?
6 1672
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proXSe Guv9Gordi ty Moo 110y Thhy
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p° Am
#G1uer 0 Fp i )| ©2)
+ N eg?
AFAVZG“;\V Vg 6 16 2 {CWB/»“/U)‘AE
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1
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(63)
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N g* M?
5 1672 Whior Z { s u%i}
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The functions G (k=1,...,4) and gp(m7 ,mi,,
my,, miz)(k = 1,...8) are both finite, but the first ones
vanish in our asymptotic limit, whereas the second ones
are different from zero in this limit. Therefore, the lat-
ter contain all the potentially non-decoupling effects of
the four-point functions. The explicit formulae of the g
functions (k = 1,...8) are collected in Appendix B. As
a check of the previous functional computation we have
also calculated all these four-point functions by diagra-
matic methods and we have got the same results.

Notice that if one takes the sum of the corresponding
SUSY squared masses involved as the large parameter in
the asymptotic expansion, Xm?2, one finds that the dom-
inant contributions to these gi functions are logarithmic.

Generically, we can write
Xm? Am?
7)o(sh)
Hao 2m

(66)
where Am? denotes the various squared mass differences
and, as in the previous cases, all the contributions of the
type O ((Am?)/(Xm?)) vanish in our asymptotic limit.
Notice also that in the previous expressions of the four-
point functions that are given in terms of these g; func-
tions, the decoupling is not manifest yet since the Lorentz
tensorial structure is apparently not proportional to the
tree level one. However, after rewriting these results in
terms of the proper variable which in this case is given by

(65)

~2 ~2 ~2  ~2 0\ _
gk(mtlvmt27mb17mb2) =0 (lOg

1 - _ -
M2 = i(mgl +m?2 +mgl +ng)7

one finds out that the one-loop corrections to the four-
point functions, AI', in the asymptotic limit of large M?
are indeed proportional to the tree level contribution. This
can be seen in the last lines of (62) to (65), respectively.
Therefore, the potentially non-decoupling effects in the
four-point functions can also be absorbed into redefini-
tions of the coupling constants and wave functions.
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Similar expressions are obtained for the sleptons sector
doing the corresponding replacements mentioned at the
end of Sect. 4.1.

In summary, the results in this subsection explicitly
show the decoupling of squarks and sleptons in the four-
point functions.

5.2 Inos contributions

Here we consider the effective action for four-point func-
tions generated from the integration of charginos and neu-
tralinos, which results after computing the corresponding
last functional traces given in (23). By inserting the oper-
ators and propagators of (12), (21) and (22) into (23) and
after a lengthy calculation, that we do not present here
for brevity, the inos contributions to the four-point part
of the effective action can be summarized as follows:

IVl =i / dpdkdFdi(2m)*(p+ k +r +1)
/M* GUM (NI, NI, M, M)
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Analogously to (52) we have used here the shorthand no-
tation (G - O) for the various products of traces and oper-
ators whose explicit expressions are collected in Appendix
B. Notice that there are some terms without subscripts
which means there is no momentum contracted with the
results of the traces. For example, in (G - O)++++, the su-
perscripts denote the four charginos in the loop and the
absence of subscripts indicates that there is no contraction
with any momenta. The definitions of the ¢1, g2, g3 and g4
momenta, as well as the generic function G¥7* (M;, M , M,

M;) are given by

2 =q+p,
g3 =q+p+Ek,

@a=q,

@u=q+p+k+r, (68)

and

gljkl(M“ MjaMka Ml)

The SM as the quantum low-energy effective theory of the MSSM

685
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(a2 = 02] a3 - 81| [a3 - 022| |43

In order to obtain the exact contributions to one-loop level
from the inos sector, one must work out the correspond-
ing Dirac traces in (67) and then write down the results
in terms of the standard one-loop Feynman integrals. We
have performed such a computation but due to the length
of the final expressions we prefer not to present these exact
results here and to restrict ourselves to the presentation
and discussion of just the corresponding asymptotic re-
sults.

By starting with the exact result given in (67) and by
inserting the asymptotic results of the corresponding inte-
grals and coupling matrices we have derived the four-point
Green’s functions from the inos sector in the large mass
limit. The results of these integrals are given in Appendix
A. After a lengthy calculation we can summarize the re-
sult for the four-point part of the effective action in the
asymptotic limit by the following expression:

_ Mlz] '

4 S
gVl = §w2 / dpdkdrdts(p+ k +r +t)

X Z{ (O' +0*+ 0* + 0% + 0% + O'°
i,5,k,l

312 14 318 22 26 530\ HVOA
+ 0P+ 0"+ 0" +0%+0"+0%")

038/,1,1;;2[)\ + (046 +O5O +O54

58 60 68 376 <84\ HVTA
+ 0% 4 0% 4 0% 4 070 4 OM) 1ot

M? 4+ M? + M? + M?
X (A log ! j4’u% b d ) Bo’y,u)u (69)
where 85,5 is the tree level tensor defined in (61) but
with the Lorentz indices interchanged, and the operators
Ofﬁg)‘ are given in Appendix B.

At this point, we can already see that the asymptotic
result from the inos sector is proportional to the tree level
tensor after the proper symmetrization over the identical
external fields and therefore, we can conclude that the
inos decouple in the four-point functions.

For completeness we present in the following the cor-
responding asymptotic results for the four-point functions
with specific external gauge bosons. After a lengthy com-
putation, we get

6292

AAWTW
AT = 1972 Bp,ua')\

HroX X

< {_246 " gg(Mf,M;,M?,Mg,Mng)}

2 52
p°  Am
+G5,uua)\ |:O (27’7’127 2 >:| ) (70)
3
Azwrw- _ eg” 1
A Fp,ua)\ X 1272 cw nUro

3 I
= 5eke e+ ol Ve 01D, A9, NES, ) |
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2 ~9
pe Am
+G6uvon {O (Zﬁz?’ W)] ) (71)

4
- g 1
A FZZW W _ B
proX X 4872 CQ uro A

x {6cly Ac + gui (B, NI, NEY, N9, 1S, 315) }

2 ~2
P Am
+G7;u/a)\ |:O (277?,27 2 >:| )

4
wrw-wrw- _ 9
A F/UJU/\ X - 096772 BMO’V/\

(72)

X {12A6 +912(MT7M;7M{)7M2(J’M30’M£)}

2 52
p°  Am
+G8;¢u0)\ |:O (27%27 2 >:| )

where the functions Gy 05 (K =5,...,8) and gy (M7, , M7,
my, ,my,) (k=9,...12) are both finite, but the first ones
vanish in our asymptotic limit, whereas the second ones
are different from zero in this limit. The explicit form of
the latter can be found in Appendix B. In principle, they
contain all the potentially non-decoupling effects of these
four-point functions. As a check of the previous functional
computation we have also calculated all these four-point
functions by diagramatic methods and we have got the
same results.

As in the previous n point Green’s functions the one-
loop corrections in (70) to (73) are also proportional to
the tree level vertex and at the end, we can conclude that
those potentially non-decoupling effects in the four-point
functions can be reabsorbed into redefinitions of the vari-
ous SM parameters. Therefore, we can guarantee that the
decoupling of the inos in the four-point Green’s functions
take place as well.

In addition, we have checked that after the proper sym-
metrization over the indices and momenta of the identical
external  fields, the AIA4AAA A[PAAAZ APAAZZ
AIA%222 and AI'?4%7 contributions are exactly zero in
our limit as was expected since there are no corresponding
tree level vertices. This is a rather non-trivial check of our
computation.

As can be seen from all the results in the present article
and those obtained and discussed in [16], we have proved
explicitly that the decoupling of sfermions, charginos and
neutralinos in the two-, three- and four-point functions
with external gauge bosons do indeed occur and this de-
coupling proceeds by assuming that all the sparticle mas-
ses are large as compared to the electroweak scale but
close to each other.

Once we have shown the decoupling of SUSY particles
in the two-, three- and four-point functions we can ask
about the decoupling in the n point functions, with n > 4.
In this case two important observations are in order. First,
due to the renormalizability of the MSSM there are no
divergent contributions to the five- or higher-point func-
tions since those functions vanish at the tree level and we
are working in renormalizable gauges. Thus, those Green’s
functions are finite and so are the sums of the Feynman
integrals corresponding to each given Green’s function. In

(73)
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this case their asymptotic behavior in the above defined
region can trivially be obtained. Then it is immediate to
check that the decoupling of the SUSY particles also takes
place.

6 Conclusions

In this work we have studied the decoupling properties
of the SUSY particles appearing in the MSSM. In partic-
ular, we have shown that the SM can be considered as
the low-energy effective theory of the MSSM in the limit
where the sparticle masses are large. Our proof of decou-
pling in the Green’s functions with external gauge bosons
is quite general and does not depend on the particular
form of the soft breaking terms since it is performed com-
pletely in terms of the SUSY masses. The decoupling is
shown in the sense of the Appelquist—Carazzone theorem.
By this we mean that in the appropriate asymptotic re-
gion of large SUSY masses considered in this work, the
effect of the SUSY particles on the gauge boson Green’s
functions can be absorbed into redefinitions of the SM
parameters and gauge boson wave functions, or else they
correspond to new terms which are suppressed by nega-
tive powers of the SUSY masses. More specifically, the po-
tential non-decoupling SUSY effects that have been com-
puted in this paper, given by the divergent terms of O(A,)
and the finite functions f; and g; of (49), (50), (55), (56),
(62)-(65) and (70)—(73) can all be absorbed by a proper
choice of the SM counterterms, i.e, the gauge boson mass,
the coupling constant, the gauge parameter and the wave
function counterterms. Furthermore, the explicit f; and g;
values of these finite functions, given in (B.7) and (B.8),
will determine the corresponding values of the renormal-
ization scheme dependent finite contributions to the men-
tioned SM counterterms. In particular, they can be used
to find relations between the counterterms in different
renormalization schemes, e.g, between the MS and on-
shell counterterms.

Since we have demonstrated here that all these poten-
tial non-decoupling effects can be absorbed into the defini-
tions of the SM parameters, they are finally unobservable.
Namely, they cancel out in the physical observables with
external gauge bosons. Indeed, it has already been shown
by an explicit computation in [16] of the particular ob-
servables S, T and U that all the heavy SUSY particle
effects do in fact decouple there as expected.

The demonstration of decoupling of SUSY particles
performed in this work is valid for the case where all
the sparticle masses are much larger than the electroweak
scale, but their squared mass differences are smaller than
their sums for each MSSM sector. The other asymptotic
region of large SUSY masses corresponding to the case
where the squared mass differences are of the same order
as their sums has not been considered in this paper and
should be treated as an independent case.

In addition to the SUSY particles, the MSSM has also
other particles which are not present in the SM. These are
the extra Higgs particles that must be added to the MSSM
in order to produce fermion masses and that through their
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SUSY partners give rise to an anomaly free theory. In or-
der to provide a complete proof that the SM is really the
low-energy effective theory of the MSSM one must show
that these extra scalars also decouple in the above men-
tioned sense. The work performed in [18] shows that this
is indeed the case. In addition, one must also study not
just the Green’s functions with external gauge bosons, but
also with all the possible SM particles in the external legs.
Particularly interesting in the context of decoupling could
be the Green’s functions (and therefore the observables
as well) with external heavy fermions where due to the
enhancement effect of the heavy fermion masses the de-
coupling of the SUSY particles could either not occur or
to proceed much more slowly. Work in progress in this
direction is being done but the results will be presented
elsewhere.
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Appendix A

In this Appendix we give the definition of the one-loop
integrals that have been used in the computation of the
three- and four-point functions and their results in the
large mass limit. The one-loop integrals contributing to
the two-point functions were presented in our previous
work [16] to which we refer the reader for completeness.
As all these integrals can be written in terms of the stan-
dard scalar and tensor integrals [17], we start by reviewing
the definition of these standard two-, three- and four-point
integrals in the following. From now on, we have the fol-
lowing notation:

dPq
dg = 4-D
[aa= [ Gt

and use the metric g, = diag (1,—-1,—1,-1).

(1) Standard integrals.

1
Ag(my) = —i1672 quE’

Bo (0, mi, ma) = —116w2/d§%,
CO,[LL,[LLV,HDO’(p7k7m17m27m3)
. AL, qu, 90905 44990
= —1167r2/dq{ #DngDl; },
Doy o, pvor (s k, myma, ma, ms, my)
E711%2/qu{Lqmqﬂqu,ququqmququaqx}’
D1D>D3Dy
(A1)

with the denominators given by

D, = [qQ_m%]a

687
Dy = [(q +p)? — mg] )
Dy = [(g+p+k)* —mj],
Dy=[(g+p+k+r)?—mi]. (A.2)

(2) One-loop integrals. The three-point integrals appear-
ing in (44), (C.7) and (C.8) are given in terms of the
standard integrals by

T,fb(H mfavmfb) = 2B/L(pa mfa7mfb)
+puBo(p, 1i0g,, M y,), (A.3)
Tﬁgfj(p, k, mfa’mfb7mfc) = {80;“/0 +4[(p + k)trcuu
+(2p + k)0 Cuo + puCuol + 2[(p + k) (20 + k), O,
+pu(p + k)UCV +pu(2p + k)VCU] +pu(2p + k)l/
x (p+k)oCol (p, k, g, g, my,), (A4)

7;1'1]/'1;(])7 k,m;, mj’ mk) = {4CMVU + Q(k + p)UCMV
+2(k+2p),Cro +2p,Cos
+(kupu + kupu + 2pﬂpl/)00' + (kupa
+kopy + 20000 )Cu + (kopu — kups)Cy
—9a8 [9uvCapo + 9o Capp + 9ouCapy
+2951Cpu(k +p)a + Cop(gou(k + 2p),

+9uwko = govky) + 29, ChoPa

+C5(goppa(k +2p)y + gopkapy

+9uv (kapa - kapa) + gau(kozplt - kupa))
+pp(k + p)a(guuca + 95,.Cu
— 9o C)]} (0, k, g, g, M), (A.5)
L3 (0, by iy i, k) = {90 Co + 9o Cly
~9ouCu} (D, Ky iy 1, k), (A.6)
P (p, kg, g, ) = {gow (puCo + C)
+90u(PvCo + Co) = guw (PoCo + Co) }
X (p, ky g, g, ), (A.7)

»7;2{/];(17, ka mia mj7 mk) = {g/u/(ca + (k +p)aCO)
_gau(0u+(k +p)u00)+gau(cu + (k' +p)uCO)}

X(p7kami7mj7mk)7 (A8)

where the variables within the last parentheses corre-
spond to the arguments of the corresponding integrals.
Now, we present the four-point integrals appearing in
the computation of the four-point functions. Let us
begin with those involved in the computation of the
sfermions contributions, that is, in (58):

ok (p+ kg, myp,) = Bo(p+ kyig,, my, ), (A9)
T (py kg, g, g, ) = {4C,, + 2(k + 2p),C,,
+ 2p,Cy + pu(k + 2p),Co}
X(p,k‘,ﬁlfu,mfb,mfc), (A.lO)
ngljchdk(p7 k,romy, g, my,, mfd) = {16DIWU>\
+8(k +p + T))\Duua + 8p,uDucr)\
+8(2k +2p + T’)UD“,,)\ +8(k + 2p)l,Dlm>\
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+42k +2p + 7)o (k +p +7)A(Dp + puDy)
+2(2k + 2p + 7)o (k + 2p), (2D ,ux + puDy)
+2(k +2p)u(k +p +7)2(2Dpuo + puDs)
+2(2k +2p+ 7)o (k+2p)u(k+p+71)AD,
+pu(k+2p),(k+p+1r)x(2k+2p +7)sDo
+4p,(k+p+1r)aDyo + 4pu(k + 2p), Do
+ 4pu(2k +2p + 1), Dyy}
X(p7 k,r, mfa’mfb’mfu’mfd>'
(A.11)

(3) Asymptotic results. As we said before, we compute all

the integrals in the large mass limit by using the m-
theorem [15]. Some examples of the applicability of this
theorem in the present context of decoupling of SUSY
particles can be found in [16].
We present in the following the results for the standard
one-loop integrals in the limit of heavy SUSY particles.
In taking this limit we require in addition that the dif-
ferences of masses be always smaller than their sums,
ie m® > k* and |7 — m3| < |m7 4 m3|. The results
of the standard integrals in our asymptotic limit are
as follows:

m?2 + m3
Bo(p, ml;mQ) = (AE - IOg 12 2 2) )
Ho
1 m2 +m3
Bu(p7 mlam2) = _§pu (Ae - IOg 2[1% )

1
Buu(pamlamQ) = Z(mf + mg)

2 2
my + ms

X (Ae + 1—- 10g 2/«’4(2) ) g;tu
1, m2 + m3

TS AG - 1 —a 9 LV
1217 ( og 202 9,
1 m?2 4+ m3

Jrgpupu <A€ —log 27/% ;

CO(p7k7ml7m2;m3):Oa Cu(pak7m1am27m3)zoa

CMV(pakvmlam27m3) =
1 <Ae - log m% +m%2+m§> jaza)
4 3pg
CI“’U(p,kvmlam%m?)) =
1 m? + m3 + m?2
— (2 k A —1 it S B
52+ )p< og 3,2
X [g;u/gop + 9ucGvp + gupguo] )
Do(p7kaTam17m2am37m4) = 0)
Dﬂ(pﬂk7r7m17m27m3am4) = Oa
D#V(p7kuruml7m2um37m4) = 07
Dp.l/a'(pv k,’l’, m17m27m37m4) = 07
D#VUA(pvkaTam17m23m37m4) =
14 _1Ogm%+m%+m§+mi
21 \ 7 42
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X [GuwGor + GuoGur + Gurguo - (A.12)
The corrections to these formulae are suppressed by in-
verse powers of the sums of the corresponding squared
masses and vanish in the asymptotic large mass limit.

Finally, notice that the results for the three- and four-
point integrals appearing in our calculations can easily be
obtained from the above formulae by substitution in (A.3)
to (A.11), respectively. Here we will not present these re-
sults for brevity.

This completes our analysis and results of the three-
and four-point integrals that have appeared in the present
work.

Appendix B

In this Appendix we collect the definitions of all the oper-
ators that have been introduced in this work as well as the
different functions, f; (i = 1...4), and ¢g; (i = 1...12),
appearing in the asymptotic results for the three- and four-
point Green’s functions, respectively. Since we work in
the momentum space, all these operators are functions of
the corresponding momenta. Thus, for instance, the three-
point function operator given by O*7 ~ VIV¥Vy really
means 0" ~ VI(—p)V¥ (—k)V§ (—r) and similarly for
the other operators. In the following we omit this explicit
momentum dependence for brevity.
The operators in (44) are defined by

OlM = eA”Qf + iZ“éf
Cy

9 11 +u yth 9 1xr—p yobt
+EW MEf +EW ,uz\f’

A A 2 A A R
O = FQIA A + A1 2 Qs Gy + T G212

9’ ’
+ ?EfW*“LW”—

eg th v— yibt
+ —=y AP (WYX + WYX
V27 ( f 7)
9> s + yotb bt
— =y Zr(WrTEY + WY XE) .
V2 ¢ ( f 7)
In order to write a general expression for the three- and
four-point functions from the inos contributions that have
been presented in (52) and (67), we have introduced the

shorthand notation (G - O), which we give explicitly in the
following. For this purpose we use the compact notation:

(B.1)

Guyaa = Tr['Yu’YVVa'Ya]a
Gauﬂy"/o’ = Tr[’Ya’Y;[Yﬁ’YV’Yﬂ/’YaL

Gauﬁl/'yo’p)\ = Trha’Vu’Yﬁ'YV’Y“/'YU'Yp'V)\]- (B'Q)

The expressions for each (G - O) term in (52) for the three-
point functions are

(G-0){35" = Gappns (0" + 0%+ 0+ 0° + 0°)
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(G-O0)*" = Gawe (Ol +0°+0°+ 0% + 09) :

G- O+++ Gal/o’ Ol+03+04+07 OlO ,
o

(G-0)3*" = Gy (01 + 0%+ 07+ 07+ 0,
(G- 0)dy" = Gapsuns (01 + 0™,

(GO = Gapu (01 +0"),
(G-0)5"" = o (017 +0),
(G-0)5™ = Guyao (017 +0%),

(G- 0)753 = Gappire 0%,
(G- 0)""+ Goywo 0%,
( )2
( )3

Q
Q

oo+ 24
- G,u,cwao )
00+ G

G-0 jwasO®,
(G- 0)755 = Gapprryo 0",
(G-0)9° = Gapo O,
(G- 0)5° = Graws O™,
(@G- O)ooo _ GMV&UOI5,

(B.3)

where the traces are given in (B.2) and the operators
whose indices have been omitted here for shortness are

given by
O = —e* A, Ay Agbij6ikbni
+e % [AALZ56i5051(0'L + O'R ki

+A, 2, A6k (0", + O'R) jik
+ Z, A A005101: (0, + O'R)ijl

2
O _ _e%szuzyzoaij (0'1.0"(m),
+ O/RkiO/R(L)jk) )

2
A4(B)puro g )
O ijk — —CTVVQAUZMZV(S]“
X (0", 0Ly + O'ri, Ot »
2
A6(T)puvo g
0] l;]k = _BWAUZMZU(Sjk
X (O’L” OIL(R)M + O/RijO/R(L)ki) )
3
A8©@)uvo _
O™k = 2o’ mas

X (O/Lij OIL(R)M O/LM + O/Rij OlR(L)jk- O/Rki) )

A10(11) pro 93
0 ik = Gppg3 nivie
x (O/Lij OIL(R)MO/RM + O/RijO/R(L)jkO/LM) ’
3
A12(13)uve
O ik = 9eu8 ZuZyZo

X (O/,Lij O/IL(R)jk O//Lki + O”Rij O//R(L)jk O”Rki) ,

/—\AABAA
— N N~ ~—
= O
s
+
+

A14(15)uve 9
O ik = 20w3Z wly L
X (O//LijO L(R)jkO Rus +O/,RijOI/R(L)jkONLM),
2
O — e AW W b

(OL OL(R) + Or,, OE(L)M>7

A18(19)puvo — 1+
O ik = —QCW Z,,WM W
X (OLij OIL(R)jkOi‘fki + Orj; O/R(L)jkoli:ki) )
A20(21)prvo 93 +
0] ik = Z—ZVW W

(OL”O L(R), ORk + OR”O R(L); OjL ),
A22(23)pvo g +
0] iik = 5 WZ W, W]
X (O//Lij OL(R)jkOﬁkj + OHRz‘j OR(L)MOR@) )
3
A24(25)uve 9 — 1+
0 ik = e W Wo

x (O//Lij OL(R)MOR“; + O//Rij OR(L)jkOﬁki) . (B4)

The generic terms (G - O) in the inos contributions to

the four-point functions given in (67) can be written as

(G- 0) 551 " = Gapprropr (0" + 0* + 0 + 0° + O°
+010 012 + 014 + 0'18 + 022 + 026 + 030) ’
(G-O) ;™ = Gapwopr (OF +0* + 0° + 0° + 0°
+010 + 013 + Ol? + 018 + 023 + 027 + 031) ’
(G-0) 5™ = Gapryor (01 + O* + O° + O° + OF
+Oll + 013 _|_ 016 + 019 + 023 _|_ 029 + 034) ,
(G-0)5" = Gappror (OF + 0% + 0" + 0° + O°
+0" + 02 + 0 + 0" + 0% + 0% + 0*?),
(G- 0)2, ™ = Grimopr (O +0O* + O* + 07 + OF
+0" + 0 + 0" + 0*' + 0*° + 0% + 0%,
(G-0)3, ™ = Gupvopr (0' +O* +O° + 07 + O°
Oll 012 017 021 024 028 033)
(G O)++++ GHB”'YU)\ (Ol +03 —|—O5 +O7 +08
010 012 016 020 024 026 036) ,

(G-O)" = Gluor (0" +0° +0* +O7 + O°

1O L OB L OB L 920 4 O25 L 927 4 037) :
.0 ‘1’;3z+ = Gappuopn (0'46 + 0% 4 O 4 an) ’
14 = Goz,uuapA (046 + 0% 4+ 0% + 061)

= Gapor OY £ 0% 4+ 0% 4+ 0%,

( )
o+++ ( 47 + 050 4 058 4 062)
(0° )
(0° )

Q Q
Q

Q
S
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(G-0)35 " = Gupiror (0* + 0% + 0% 1 0%), x8;k0kt (O, O'Lery; + O'ri; O'R(L)s) »
(G-0)" " = Gluor (0% + 0% + 0% 4+ 07, O Oman _ 2 9 A ANZ,Z
(G- O)T;;ﬁrj - a#ﬁvvopA (054 0% + 084) ) ’ , 2 ,W , ,
(G- 0)00++ _ \ (055 0% + 085) x0i501; (O L O L@y T O'r;, O R(L)kl) )
= oz/_wa'p y 2
00 . - 10(11)proX g
(G- O) ++ Goapron (055 o™ 4 088) ’ O ( )uz]kl — 2 502 A ANZ, Z,
oo+ _ 54 |, A70 | A86
(G . O) ++ - Ozltﬁllo')\ (O ?73 + ?89) ) X(Sjkréli (O/Lij O/L(R)M + O/Rij O/R(L)M) 5
(G‘O) uwopA (O +0"+0 )v 012(13)Wa>\ ) 92 A AT 7
(G0 = Grpops (07 + O 4 O) i = € gz Ao Ay
G.0) — O 1 O 4 9% X061 (O'L,,0'Lry, + O'ri, O'R(L),1) 5
( ) ,u,(;h/'ycr)\ 3 5
oot++ _ 75 91 214(15)pvo) g
(G . O) . HVO')\ (O + O + O ) O ( )lu‘”kl = —ETVV?)AMZVZJZ)\
(G . O)iiii = auﬁu'yap,\O X(SU (O L O L(R MOIL” + O/RjkOlR(L)klO/Rli) ’
(G ’ O) - apuapAO 0“16(17);1,1/0)\ _ g Az 77
(G- O)OO°+ — QWW/\O ijkl = 6726“7 wlvligZix
(G- 0)0°" = GapprorO0"8, %635 (0’1, O"LR)w O'Ris + O'Ry O'r(1)0 O'Lsx) 5
G . O 000+ o O . Vo
EG O;ooo-ﬁ- o p/\O Olsug)ijkl)\ B _leW?» e
’ uﬁvop/\
(G- O)OOO+ MﬁwoAO 82 X0jk (O/Li.f OIL(R)MO/LM + O/RijO/R(L)klO/Rli) )
3
(G- 0)%°" = Gor O3, OEman — —e%g?AVZHZUZ)\
(G 0)7355 = Gapprrop O, %051 (0'1,, 0"t (1)1, 'Ry + O'r, Oy, O
G-0 0000 __ G 039 Jk Lij L(R)kt Rii Rij R(L) LM) ’
EG O;oooo GQ#UUPAO42 022(23)%1"‘;1)\ = 7697314 Z/ A Z)\
. 13 = Yo (%] 2CW3 o
(G-0)75” = Gappror0*™, X0kt (O'L,;0'L(w),;,O'ri; + O'r;;O'R(1),, O'R1y) 5
G . O 0000 — G o O . 3
EG O;oooo G# ! p/\O 024(25)M:_?/€>\l = 7629 SA Z“Z ZA
. — vo cw
0000 poee 0 (O'1,..0' o’ O'w..O o'
(G- 0)53°° = GLpuyerO*, 01 (0L, O'L(w) . O'ris + O'ry, O'R(1), O'Lir)
(G . O)oooo _ Gp,uo’)\O (B5) 026(27);{1/‘!;1)\ _ 76iA)\Z/ 77
ij 2 WLy Lo
where we have assumed again the notation for the traces x68;; (0", 0" L(®);.O'Li + O'r;;O'r(L),, O "Rut) 5
given in (B.2) and the corresponding operators introduced § e
here are 028(29)“177,3 =—e~—=A\Z,2,7Z,
1] 2
Ovz-lﬁcl;ok = 64ANAVAUA)\5ij6jk6kl6li X0y (O L”O L(R); O R T o' RlJO R(L)JkO Lkl) )
gt
%30(31)proA
—63% [Z,A)A; AN 101101 (0", + O'R) 45 o™ )Mijkl = %ZMZVZGZA
+AHZVAUA)\5ij5k151i(OI/L + O//R)jk X (OILU O/L(R)jkO/LkzOlLu +O/Rij O/R(L)jkolelo/Rli) ’
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The definitions of the coupling matrices, Q £ G [ b
20, X, Our, Of g and Of i of the above equations can
be found in [16].
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Finally, we give explicitly in the following the expres-
sions for the f; and g; functions:
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Appendix C

This Appendix is devoted to present the exact results to
one loop for the three- and four-point sfermions contribu-
tions as well as the three-point inos contributions which

AFAW+W— AFZWWV—

are denoted in the text by o G e G and

AAWTW AZWTW ™ ZZWTW ™ Wrw-wtw-
AF;LUU)\ q AF;AUU)\ q AF;LL/J/\ q AF;LUJ)\ q

and AI' L‘L“VKX+W7, AT’ HZVVXWI){J, respectively. The exact for-
mulae for the >1g0ur—point inos contributions have also been
computed by us and are available upon request, but they
are not shown here due to their extreme lengths. The mo-

mentum assignments for the external gauge bosons are
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VH(=p)Vy (=k)V§(—r) in the three-point functions,
ALY Y2Ys and VI (—p)Vy (—=k)V (=r) Vi (—t) in the four-
point functions, AI' ;/; V§\V3 Vi and the convention is with all
the external momenta in-going. For brevity we here omit
the arguments in the Feynman integrals since the nota-
tion we have chosen for them is self-explanatory. Thus,
for instance,

Jade = JagfrdA(pv k,r, mfanfb7mfc7mfd)7

prox —
abed — gabed ~ ~ ~ ~
J)\ua,u = Auo‘,u(tv kﬂﬂ, mfa7mfbamfevmfd),

and so on. In addition, a proper symmetrization over the
indices of identical external fields must be understood in
the following expressions.

(1) Three-point sfermions contributions.

APAWTW T _ —egﬂﬁ Ne
1224 q 2 (271_)4

_% ) {(Qf)ab(zf Joe( T )eaT e

a,b,c
HQF)ab(ZW)pe(Z9)ca T2V
+(fol))rlb(Qf)bc(Z?t)caTyall;g
+(E?t)ab(@f)bc(z}b)caTgﬁ?/
HEP)ab(Z5 )6 (Q ) caTE2E,
HEF)ab(Z7)an(Qs )abT,?f,’Z]} (C.1)
N,

ATZWV WS s T

re 2ew (2m)*

f

—% ((2 "Yab(ZF)6a T Gpio

+ (ZM)ab(EF)6a T g0 ]

-2 > (6 (=0 (2T
HEP)ab(ZY)oe(ZW)ca T2V,
()b (G p)oe( S8 ca TS
()b (G poe( T )ca T

H(ZF ) ab ) ‘

(2) Four-point sfermions contributions.

FAAW*W’ — 2022 Ne

vo q - gm
uroX g (27r)4

((Z}b)ab(E?t)bagpagVAJP+T
(Z%)ab(EPVbagurgva J521)]
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+(Z9)an( (Z)ea( Q) da TS0,
(<2f Jas (EF Ve 550,
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+ ()@ @p)eal S0 alitit |} (C3)

Qf)bc
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arpzviw _ e’ m Ne
oAt ew 2 (2m)t
X Z > K (QrG)an(Ep)badt,

a,b
+ (2f>ab<Qfo)baJﬁL) GG

() S

(Zf )ab(Z}b)banir) Guo v
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+((ZP)ab(ZF pa TS
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Z E ab E ) Jabcga')\
a,b,c

+ (2?”) (Z ) Jabcgo—)\) (Ef)ca]
EPIC R RC RE P
a,b,c
) b (Z)0e( Z)ea (Z) ga 002,
(2“’) b(Z%)0e (Z)ea (%) a0 o003
+ (E)ea(ZP)a J“Z&i)
+(Efct)ab(2f Joe (ZF)ea(ZF)aa ook
+ (Z8)ea(ZP)aa T ]} (C.6)

(3) Three-point inos contributions.

AWTW = _ eg®
AFWU X 87r2
2
X Z Z 5jk {(OLij Oﬂm + ORij O;{h)
i=1 j,k=1

[7:71{/; + M+M+I;J;Lku} (OLz‘j ngi + OR“ OIJ;“)

o +ijk o + 715k
(e NPk, + v 7| b (C.7)
AZWTWT _ g 1
pro X 872 ey
4 2
Z Z { Lij OLMOE_MJFORM Oﬁjkogkz)ﬁf‘]z
i=1 j,k=
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o Uy
+(Ov, OR,kOfki + Or,, 01, Of )M M T3
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3 5[,
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+(0f,,Or,, Of  +Og, O, Of MM Tk

pov

+(0f,,0r,,Of  + Og, OL,, Of . )M M ik

k “upov
+(0Lij OLJkOIJ:{r;” + Oﬁz] ORJ‘k Ofk

+ 1 + ijk
Oij OL;W +OR1] ORJk OR,]”)’]—//LO'I/

) N2 N Pidk } }

(C.8)

The integrals appearing in the above formulae are given
in terms of the standard one-loop integrals in Appendix A
and we refer once more to [16] in order to find the explicit
expressions of the coupling matrices.
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